Rút gọn:
\(A=x^6-2007.x^5+2007.x^4-2007.x^3+2007.x^2-2007.x+2007\) ( với x=2006)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co
A=2007^2006( lên lơp 6 e se hoc)
=>A=2007^2 x 2007^2004
=>(...9)x(...1)=(...9) (1)
Ta co:
B=2006^2007=(...6)
\(x-\frac{x}{2}+\frac{x}{2}-\frac{x}{3}+...+\frac{x}{2006}-\frac{x}{2007}=\frac{2006}{2007}\)
\(x-\frac{x}{2007}=\frac{2006}{2007}\)
\(\frac{2007x-x}{2007}=\frac{2006}{2007}\)
\(\frac{2006x}{2007}=\frac{2006}{2007}\Rightarrow2006x=2006\)
=>x=1
Đặt x -2006 = y
pt <=> \(\frac{y^2-y\left(y-1\right)+\left(y-1\right)^2}{y^2+y\left(y-1\right)+\left(y-1\right)^2}=\frac{19}{49}\)
<=> \(\frac{y^2-y^2+y+y^2-2y+1}{y^2+y^2-y+y^2-2y+1}=\frac{19}{49}\)
<=> \(\frac{y^2-y+1}{3y^2-3y+1}=\frac{19}{49}\)
<=> \(49y^2-49y+49=57y^2-57y+19\)
<=> \(8y^2-8y-30=0\)
<=> \(4y^2-4y+15=0\)
Giải tiếp nha
\(A=x^6-2007x^5+2007x^4-2007x^3+2007x^2-2007x+2007\)
\(=x^6-2006x^5-x^5+2006x^4+x^4-2006x^3-x^3+2006x^2+x^2-2006x-x+2006+1\)
\(=x^5\left(x-2006\right)-x^4\left(x-2006\right)+x^3\left(x-2006\right)-x^2\left(x-2006\right)+x\left(x-2006\right)-\left(x-2006\right)+1\)
\(=\left(x^5-x^4+x^3-x^2+x-1\right)\left(x-2006\right)+1\)
Thay x = 2006
\(\Leftrightarrow A=1\)
Vậy A = 1 tại x = 2006
\(A=x^6-2007.x^5+2007.x^4-2007.x^3+2007.x^2-2007.x+2007\)
\(=x^6-\left(x+1\right).x^5+\left(x+1\right).x^4-...+x+1\)
\(=x^6-x^6-x^5+x^5+x^4-x^4-...-x+1\)
\(=1\)