K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

-1 và 1 là nghiệm của đa thức A(x)

\(\Rightarrow A\left(1\right)=1+a+b-2=0\Rightarrow a+b=1\)

\(\Rightarrow A\left(-1\right)=-1+a-b-2=0\Rightarrow a-b=3\)

\(\Rightarrow\left\{{}\begin{matrix}2a=4\\2b=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)

Vậy a = 2, b = -1

14 tháng 6 2017

Ta có: \(A\left(x\right)=x^3+ax^2+bx-2\)

\(A\left(-1\right)=0\Rightarrow\left(-1\right)^3+a\cdot\left(-1\right)^2+b\cdot\left(-1\right)-2=0\)

\(\Rightarrow a-b-3=0\Rightarrow b=a-3\left(1\right)\)

\(A\left(1\right)=0\Rightarrow1^3+a\cdot1^2+b\cdot1-2=0\)

\(\Rightarrow a+b-1=0\Rightarrow a+b=1\left(2\right)\)

Thay \(\left(1\right)\) vào \(\left(2\right)\) ta có:

\(pt\left(2\right)\Leftrightarrow a+a-3=1\Leftrightarrow2a=4\Rightarrow a=2\)

\(\Rightarrow b=a-3=2-3=-1\)

Vậy đa thức cần tìm là \(x^3+2x^2-x-2\)

14 tháng 8 2021

Mình cảm ơn ạ

19 tháng 4 2021

làm ơn, mình đang cần rất gấp !!!!!!!!!!!!!

:((((((((((

 

19 tháng 4 2021

Do x = -1 là nghiệm của phương trình

⇒ a - b - 1 - 2 = 0

⇒ a - b = 3

Tương tự ta có a + b = 1

Vậy a = 2 ; b = -1 

 

17 tháng 6 2021

cho : f (x) = 0

=> (x−1)(x+2)=0

=>x−1=0 và x+2=0

=>x=1vàx=-2

Vậy x = 1 và x = −2 là nghiệm của đa thức f (x)

Do nghiệm của f (x) cũng là nghiệm của g (x) nên x = 1 và x = −2 là nghiệm của g (x)

Ta có: g(1)=13+a⋅12+b⋅1+2=0

⇒1+a+b+2=0

⇒3+a+b=0

⇒b=−3−a (1)

 

Ta có: g(−2)=(−2)3+a⋅(−2)2+b⋅(−2)+2=0

⇒−8+4a−2b+2=0

⇒2⋅(−4)+2a+2a−2b+2=0

⇒2⋅(−4+a+a−b+1)=0

⇒(−3+2a−b)=0

=> 2a  b = 3 (2)

thay (1) vao (2) ta dc

2a−(−3−a)=3

⇒a=0

Do b=−3-a

=>b=3

Vậy a = 0 ; b = 3

 

27 tháng 4 2022

f(x) = 0 => ( x - 1).( x + 2) = 0

=> th1: x - 1= 0 =>x = 1

     th2: x + 2 = 0 => x = -2

Vì nghiệm của f(x) cũng là nghiệm của g(x) nên x = 1 và x = -2 là nghiệm của g(x)

* thay x = 1 vào g(x) = 0

=> 1 + a + b + 2 = 0 => a+ b = -3 (1)

* thay x = -2 vào g(x) = 0

=> -8 + 4a - 2b + 2 = 0

=> 4a - 2b = 6

=> 2a -b = 3 (2)

Từ (1) và (2) => a + b = -3

                         2a - b = 3

=> 3a =0

     b = -3 -a

=> a = 0

     b = -3

------------ Chúc cậu học tốt------

Tick cko tớ nhé ~

 

`f(x)  = (x-1)(x+2) = 0`.

`=>` \(\left[ \begin{array}{l}x=1\\x=-2\end{array} \right.\) 

Với `x = 1 => g(x) = 1 + a + b + 2 = 0`.

`<=> a + b = -3`.

Với `x = -2 => g(x) = -8 + 4a - 2b + 2 = 0`.

`<=> 4a - 2b = 6`.

`<=> 2a - b = 6`.

`=> ( a + b) + (2a - b) = -3 + 6`.

`=> 3a = 3`.

`=> a = 1.`

`=> b = -4`.

Vậy `(a,b) = {(1, -4)}`.

17 tháng 5 2022

sai rồi kìa bạn ơi

 

Ta có f(x)=0 <=> \(\left(x-1\right)\left(x+2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên 1 và -2 là nghiệm của đa thức g(x)

+Thay x=1, ta có: \(g\left(1\right)=1^3+a.1^2+b.1+2=0\Leftrightarrow1+a+b+2=0\Leftrightarrow a+b=-3\left(1\right)\)

+Thay x=-2, ta có: 

\(g\left(-2\right)=\left(-2\right)^3+a.2^2+b.\left(-2\right)+2=0\Leftrightarrow-8+4a-2b+2=0\Leftrightarrow4a-2b=6\left(2\right)\)

Từ (1) và (2) ta có hệ pt: \(\left\{{}\begin{matrix}a+b=-3\\4a-2b=6\end{matrix}\right.\) 

Giải hệ pt, ta được: a=0, b=-3.

28 tháng 5 2021

Ta có : f(x) = 0 

⇔ ( x-1)(x+2) = 0 

⇔ \(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên x =1 hoặc x = -2 là nghiệm của g(x) 

Thay x = 1 vào g(x) = 0 

⇔ 13 + a.1+ b.1 + 2 = 0 

⇔ 1 + a + b + 2 = 0 

⇔ a + b = -3 (1) 

Thay x = -2 vào g(x) = 0 

⇔ (-2)3 + a.(-2)+ b.(-2) + 2 = 0 

⇔ -8 + a.4 - 2.b + 2 = 0 

⇔ 4a - 2b = 6 

⇔ 2.(2a - b ) = 6 

⇔ 2a - b = 3 (2) 

Từ (1) và (2) ⇒ \(\left\{{}\begin{matrix}a+b=-3\\2a-b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=0\\b=-3-a\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)

30 tháng 4 2018

Thay lần lượt vào mà giải

4 tháng 5 2019

1 điểm , về chỗ

6 tháng 5 2018

+) Để f (x) có nghiệm thì : f (x) = 0

=> \(\left(x-1\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy x = 1 và x = \(-2\) là nghiệm của đa thức f (x)

Do nghiệm của f (x) cũng là nghiệm của g (x) nên x = 1 và x = \(-2\) là nghiệm của g (x)

\(\Rightarrow g\left(1\right)=1^3+a\cdot1^2+b\cdot1+2=0\\ \Rightarrow1+a+b+2=0\\ \Rightarrow3+a+b=0\\ \Rightarrow b=-3-a\left(1\right)\)

+) \(g\left(-2\right)=\left(-2\right)^3+a\cdot\left(-2\right)^2+b\cdot\left(-2\right)+2=0\\ \Rightarrow-8+4a-2b+2=0\\ \Rightarrow2\cdot\left(-4\right)+2a+2a-2b+2=0\\ \Rightarrow2\cdot\left(-4+a+a-b+1\right)=0\\ \Rightarrow2\cdot\left(-3+2a-b\right)=0\\ \Rightarrow\left(-3+2a-b\right)=0\)

=> 2a \(-\) b = 3 \(\left(2\right)\)

+) Thay \(\left(1\right)vào\left(2\right)\) ta được :

\(2a-\left(-3-a\right)=3\\ \Rightarrow2a+3+a=3\\ \Rightarrow3a=3-3\\ \Rightarrow3a=0\\ \Rightarrow a=0\)

Do \(2a-b=3 \Rightarrow2\cdot0-b=3\Rightarrow0-b=3\Rightarrow b=-3\)

Vậy a = 0 ; b = \(-\)3

Bài 1. Cho đa thức P(x) = x3 + m.x2 + n.x + p, với m, n, p là các số nguyên. Biết rằng P(x) nhận x = 1 là một nghiệm và P(√2) = 1. Xác định đa thức P(x).Bài 2. Xác định một đa thức P(x) hệ số nguyên biết P(x) có bậc 2 và nhận số x = √2 + 1 là một nghiệm.Bài 3. Cho đa thức P(x) = ax2 + bx + c, với a, b, c là các số nguyên dương. Biết x = 1 − √2 là một nghiệm của đa thức. Chứng minh rằng (11a +...
Đọc tiếp

Bài 1. Cho đa thức P(x) = x3 + m.x2 + n.x + p, với m, n, p là các số nguyên. Biết rằng P(x) nhận x = 1 là một nghiệm và P(√2) = 1. Xác định đa thức P(x).
Bài 2. Xác định một đa thức P(x) hệ số nguyên biết P(x) có bậc 2 và nhận số x = √2 + 1 là một nghiệm.
Bài 3. Cho đa thức P(x) = ax2 + bx + c, với a, b, c là các số nguyên dương. Biết x = 1 − √2 là một nghiệm của đa thức. Chứng minh rằng (11a + 3b + 2c) chia hết cho 3
Bài 4. Cho đa thức P(x)=ax3 + bx2 + cx + d.Biết rằng a - 2b + 4c - 8d = 0 , chứng minh rằng có ít nhất một nghiệm.
Bài 5. Cho đa thức P(x) = (x – 3)2 + 3. Tìm x thỏa mãn P(P(P(P(x)))) = 65539.
Bài 6. Xác định đa thức P(x) có bậc 2 thỏa mãn: P(0) = - 2 và 4P(x) – P(2x – 1) = 6x – 6.
Bài 7. Cho đa thức P(x) = ax3 + bx2 + cx + d có giá trị nguyên với mọi x nguyên thì 6a; a + b + c ; d đều nhận giá trị nguyên.

1
27 tháng 11 2021

Bài 3:

\(x=1-\sqrt{2}\Leftrightarrow x^2=3-2\sqrt{2}=2-2\sqrt{2}+1\\ \Leftrightarrow x^2=2x+1\Leftrightarrow x^2-2x-1=0\\ \Leftrightarrow P\left(x\right)=ax^2+bx+c=x^2-2x-1\\ \Leftrightarrow a=1;b=-2;c=-1\\ \Leftrightarrow11a+3b+2x=11-6-2=3⋮3\)

a. Ta có: 5a +b +2c =0 => b = -5a -2c 

=>Q(2).Q(-1) = (4a +2b +c)(a -b +c) = (4a -10a -4c +c)(a +5a + 2c +c) 
= (-6a - 3c)(6a +3c) = - (6a +3c)^2 <= 0 với mọi a,c => Q(2).Q(-1),<_0 với 5a+b+2c=0. 

b. Q(x) = 0 với mọi x nên: 
Q(0) =0 => c =0 (1) 
Q(1) = a+b =0 (2) 
Q(-1) = a-b =0 (3) 

Từ (2) và (3) => a =b =0 kết hợp với (1) suy ra a =b= c =0.