Chứng minh đa thức sau vô nghiệm :
a) -x2 - 4x - 2015
b) x (x - 1) + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Sửa đề: \(x^2+2x+3\)
Đặt \(x^2+2x+3=0\)
\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)
Do đó: Phương trình vô nghiệm
b: Đặt \(x^2+4x+6=0\)
\(\Leftrightarrow x^2+4x+4+2=0\)
\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)
f(x)=x2+x+1=x2+\(\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
=\(x\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\left(x+\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^{^2}+\dfrac{3}{4}\)
=>f(x)≥\(\dfrac{3}{4}\)
=>đa thức trên vô nghiệm
Bài này có nhiều cách, vừa rồi là cách cơ bản, còn nếu bạn muốn nâng cao chút thì có thể dùng cách này nha:
Xét x≥0 thì x+1>0
x(x+1)≥0=>x(x+1)+1>0 =>x2+x+1>0 (1)
Xét -1<x<0 thì x+1≤0. Ta lại có x2≥0 nên x2+x+1 >0 (2)
Xét x≤-1 thì x<0 và x+1≤0. Do đó
x(x+1) ≥0=>x(x+1) +1>0=>x2+x+1>0 (3)
Từ (1), (2), (3)=> đa thức f(x) vô nghiệm
a) Ta có : \(4x^2-10x+9=0\)
\(\Rightarrow\left(2x\right)^2-2.2x.\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{11}{2}=0\)
\(\Rightarrow\left(2x-\frac{5}{2}\right)^2+\frac{11}{2}=0\)(vô lý)
\(\Rightarrow4x^2-10+9\)vô nghiệm(đpcm)
b) Ta có: \(-1+x-x^2=0\)
\(\Rightarrow\left(-1+x-x^2\right).\left(-1\right)=0\)
\(\Rightarrow x^2-x+1=0\)
\(\Rightarrow x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\)(vô lý)
\(\Rightarrow-1+x-x^2\) vô nghiệm(đpcm)
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
a) K(x) = -4x2 - 2
\(x^2\ge0\forall x\Rightarrow-4x^2\le0\forall x\)
\(-2< 0\)
=> -4x2 - 2 < 0 => Vô nghiệm ( đpcm )
b) Q(x) = 2(x+1)2 + 7
\(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\)
7 > 0
=> 2(x+1)2 + 7 > 0 => Vô nghiệm ( đpcm )
c) cái này mình chịu nha TvT
Ta có : \(4x^2-4x+2015\)
\(=4x^2-2x-2x+1+2014=\left(4x^2-2x\right)-\left(2x-1\right)+2014\)
\(=2x\left(2x-1\right)-\left(2x-1\right)+2014\)
\(=\left(2x-1\right)\left(2x-1\right)+2014=\left(2x-1\right)^2+2014\)
Vì \(\left(2x-1\right)^2\ge0\forall x\Rightarrow\left(2x-1\right)^2+2014>0\forall x\)
=> Đa thức 4x2 - 4x +2015 vô nhiệm (đpcm)
D(x) = x2- 4x +4 +1 = (x-2)2 +1 >0
vậy D(x) vô nghiệm
Dùng hằng thức (a-b)2=a2-2ab+b2 ta có
D(x)= X2-4x+5=x2-2x2+22+1
=(x-2)2+1
Vì (x-2)2>-1 suy ra (x-2)2+1>0
Vậy đa thức D(x)=x2-4x+5 không có nghiệm
a, \(-x^2-4x-2015\)
\(=-\left(x^2+4x+4+2011\right)\)
\(=-\left[\left(x+2\right)^2+2011\right]\)
\(=-\left(x+2\right)^2-2011\le-2011< 0\)
\(\Rightarrow\)Đa thức trên vô nghiệm ( đpcm )
Vậy...
b, \(x\left(x-1\right)+1=x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
\(\Rightarrow\)Đa thức trên vô nghiệm
Vậy...
a)\(-x^2-4x-2015\)
\(=-x^2-4x-4-2011\)
\(=-\left(x^2+4x+4\right)-2011\)
\(=-\left(x+2\right)^2-2011< 0\) (vô nghiệm)
b)\(x\left(x-1\right)+1\)
\(=x^2-x+1\)
\(=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) (vô nghiệm)