cho các số thự x,a,b,c thay đổi thỏa mãn
\(x+a+b+c=7,x^2+a^2+b^2+c^2=13\)
tìm min, max của x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x+a+b+c=7\Rightarrow a+b+c=7-x\)
\(\Rightarrow\left(a+b+c\right)^2=\left(7-x\right)^2\). Lại có BĐT
\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\) (theo C-S hay Am-Gm đều dc...)
\(\Rightarrow\left(7-x\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Rightarrow x^2-14x+49\le3\left(13-x^2\right)\left(a^2+b^2+c^2=13-x^2\right)\)
\(\Rightarrow4x^2-14x+10\le0\Rightarrow\left(x-1\right)\left(x-2,5\right)\le0\)
\(\Rightarrow x_{min}\ge1;x_{max}\le2,5\)
ÁP dụng BĐT bunhia có:
\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\left(7-x\right)^2\le3\left(a^2+b^2+c^2\right)\) \(\Leftrightarrow-\dfrac{\left(7-x\right)^2}{3}\ge-\left(a^2+b^2+c^2\right)\)
Pt (2)\(\Leftrightarrow\)\(x^2=13-\left(a^2+b^2+c^2\right)\le13-\dfrac{\left(7-x\right)^2}{3}\)
\(\Leftrightarrow3x^2\le39-\left(7-x\right)^2\)
\(\Leftrightarrow4x^2-14x+10\le0\) \(\Leftrightarrow1\le x\le\dfrac{5}{2}\)
=>xmin=1 \(\Leftrightarrow\)a=b=c=2
xmax=\(\dfrac{5}{2}\)\(\Leftrightarrow\) a=b=c=\(\dfrac{3}{2}\)
1. Đặt x = √2.cosα và y = √2.sinα (với α trên [0,3π/2])
Ta có: P = 4√2(sinα + cosα)(1 - sinαcosα) - 6sinαcosα
Đặt t = sinα + cosα = √2.sin(α + π/4) có |t| ≤ √2, nên sinαcosα = (t^2 - 1)/2
suy ra P = -2√2.t^3 - 3t^2 + 6√2.t + 3.
Đến đây bạn áp dụng P' = 0 rồi xét các gtrị cực trị.
2. Đặt x = cosα và y = sinα (với α trên [0,3π/2])
Biến đổi P = (6sin2α + cos2α + 1) / (3 + sin 2α - cos 2α)
Mặt khác lại có (cos2α)^2 + (sin 2α)^2 = 1.
Ta áp dụng P' = 0 tiếp.
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
\(\left\{{}\begin{matrix}x+a+b+c=7\\x^2+a^2+b^2+c^2=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=7-x\\a^2+b^2+c^2=13-x^2\end{matrix}\right.\)
Mà ta có:
\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\)
\(\Rightarrow13-x^2\ge\dfrac{\left(7-x\right)^2}{3}\)
\(\Leftrightarrow2x^2-7x+5\le0\)
\(\Leftrightarrow1\le x\le\dfrac{5}{2}\)
Vậy min là 1 khi \(\left\{{}\begin{matrix}x=1\\a=b=c=2\end{matrix}\right.\)
Max là \(\dfrac{5}{2}\) khi \(\left\{{}\begin{matrix}x=\dfrac{5}{2}\\a=b=c=\dfrac{3}{2}\end{matrix}\right.\)