Giúp mk nha!
Tính giá trị của đa thức:
A = 4x4 + 7x2 y2 + 3y4 + 5y2 với x2 + y2 = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=A+B
=>C=(x2-5xy+5y2-3x+18y)-(-x2+3xy-y2-x-7)
=>C=x2-5xy+5y2-3x+18y+x2-3xy+y2+x+7
=>C=(x2+x2)-(5xy+3xy)+(5y2+y2)-(3x-x)+18y+7
=>C=2x2+6y2-8xy-2x+18y+7
tính giá trị C khó quá nên mình làm có đc 1 nửa thôi, sorry nha
tham khảo
C=A+B
=>C=(x2-5xy+5y2-3x+18y)-(-x2+3xy-y2-x-7)
=>C=x2-5xy+5y2-3x+18y+x2-3xy+y2+x+7
=>C=(x2+x2)-(5xy+3xy)+(5y2+y2)-(3x-x)+18y+7
=>C=2x2+6y2-8xy-2x+18y+7
\(a,=5\left(x^2+2xy+y^2\right)-10y^2+5=5\left(x+y\right)^2-10y^2+5\\ =5\left(1+2\right)^2-10\cdot4+5=45-40+5=10\\ b,=7\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(7-x+y\right)\\ =\left(2-2\right)\left(7-2+2\right)=0\)
b: \(=7\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(7-x+y\right)=0\)
\(a,=3\left(x-5\right)-x\left(x-5\right)=\left(3-x\right)\left(x-5\right)\\ b,=7\left(x^2-2xy+y^2\right)=7\left(x-y\right)^2\\ c,=\left(x^2+y^2-2xy\right)\left(x^2+y^2+2xy\right)=\left(x-y\right)^2\left(x+y\right)^2\\ d,=\left(y^2-6y+9\right)-25x^2=\left(y-3\right)^2-25x^2=\left(y-5x-3\right)\left(y+5x-3\right)\)
\(x+y=9\Leftrightarrow x^2+2xy+y^2=81\Leftrightarrow x^2+y^2=81-2xy\\ x-y=5\Leftrightarrow x^2-2xy+y^2=25\Leftrightarrow x^2+y^2=25+2xy\\ \Leftrightarrow81-2xy=25+2xy\\ \Leftrightarrow4xy=56\Leftrightarrow2xy=28\\ \Leftrightarrow B=x^2+y^2=\left(x+y\right)^2-2xy=9^2-28=53\)
\(\text{Gọi hstl là }a\\ \Rightarrow x_1y_1=x_2y_2=a\\ \Rightarrow\dfrac{y_1}{x_2}=\dfrac{y_2}{x_1}=\dfrac{y_1}{5}=\dfrac{y_2}{6}=\dfrac{8y_1-5y_2}{40-30}=\dfrac{50}{10}=5\\ \Rightarrow\left\{{}\begin{matrix}y_1=25\\y_2=30\end{matrix}\right.\\ \Rightarrow a=x_1y_1=25\cdot6=150\)
Lời giải:
a. Đặt $y=kx$ với $k$ là hệ số tỉ lệ. $k$ cố định.
Có:
$\frac{1}{9}=y_2=kx_2=3k\Rightarrow k=\frac{1}{9}:3=\frac{1}{27}$
Vậy $y=\frac{1}{27}x$
$y_1=\frac{1}{27}x_1$
Thay $y_1=\frac{-3}{5}$ thì: $\frac{-3}{5}=\frac{1}{27}x_1$
$\Rightarrow x_1=\frac{-3}{5}: \frac{1}{27}=-16,2$
b. Đặt $y=kx$
$y_1=kx_1$
$\Rightarrow -2=k.5\Rightarrow k=\frac{-2}{5}$
Vậy $y=\frac{-2}{5}x$.
$\Rightarrow y_2=\frac{-2}{5}x_2$
Thay vào điều kiện $y_2-x_2=-7$ thì:
$\frac{-2}{5}x_2-x_2=-7$
$\Leftrightarrow \farc{-7}{5}x_2=-7\Leftrightarrow x_2=5$
$y_2=\frac{-2}{5}x_2=\frac{-2}{5}.5=-2$
Với \(x^2+y^2=0\), ta có:
\(A=4x^4+7x^2y^2+3y^4+5y^2\)
\(=4x^4+4x^2y^2+3x^2y^2+3y^4+5y^2\)
\(=4x^2.\left(x^2+y^2\right)+3y^2.\left(x^2+y^2\right)+5y^2\)
\(=4x^2.5+3y^2.5+5y^2=20x^2+15y^2+5y^2\)
\(=20x^2+20y^2=20.\left(x^2+y^2\right)=20.5=100\)
Vậy A=100
A=4x4+7x2.y2+3y4+5y2
= 4x2(x2+y2)+3y2(x2+y2)+5y2
=20x2+15y2+5y2
=20x2 +(15+5)y2
= 20.(x2+y2)
=100
Chúc bạn học tốt Trần Trọng Bằng