K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔAMB vuông tại M có ME là đường cao

nên \(AE\cdot AB=AM^2\left(1\right)\)

Xét ΔANC vuông tại N có ND là đường cao

nên \(AN^2=AD\cdot AC\left(2\right)\)

Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc EAC chung

Do đó: ΔADB\(\sim\)ΔAEC

Suy ra: AD/AE=AB/AC

hay \(AD\cdot AC=AB\cdot AE\left(3\right)\)

Từ (1), (2) và (3) suy ra AM=AN

hay ΔAMN cân tại A

11 tháng 9 2018

Bạn tham khảo lời giải trong đương link phía dưới nhé:

Câu hỏi của Thanh Thủy - Toán lớp 9 - Học toán với OnlineMath

8 tháng 9 2016

b nào bít thi giup nke. mình dang cần gấp!!!

8 tháng 2 2022

giỏi quá bé oiiii

Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

=>AD/AE=AB/AC

=>AD*AC=AE*AB

ΔANB vuông tại N có NE vuông góc AB

nên AN^2=AE*AB

ΔAMC vuông tại M có MD vuông góc AC

nên AM^2=AD*AC

=>AN=AM

1: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc DAB chung

=>ΔADB đồng dạng với ΔAEC

2: Xet ΔHEB vuông tại E và ΔHDC vuông tại D có

góc EHB=góc DHC

=>ΔHEB đồng dạng với ΔHDC

=>HE/HD=HB/HC

=>HE*HC=HB*HD

3: ΔAMC vuông tại M có MD vuông góc AC

nên AD*AC=AM^2

ΔANB vuông tại N có NE vuông góc AB

nên AE*AB=AN^2

=>AM=AN