Cho tam giác ABC có 3 đường cao AD, BE, CF cắt nhau tại điểm H. Biết 3 góc CAB, góc ABC, góc BCA đều là góc nhọn. Gọi M là trung điểm của đoạn AH
1) Chứng minh tứ giác AEHF nội tiếp đường tròn
2) Chứng minh CE.CA = CD.CB
3) Chứng minh EM là tiếp tuyến của đường tròn ngoại tiếp tam giác BEF
4) Gọi I và J tương ứng là tâm đường tròn nội tiếp hai tam giác BDF và EDC. Chứng minh góc DIJ = góc DFC
1: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
2: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
\(\widehat{DCA}\) chung
Do đó: ΔCDA\(\sim\)ΔCEB
Suy ra: CD/CE=CA/CB
hay \(CD\cdot CB=CA\cdot CE\)