Tìm các hệ thức a,b,c
a)\(2x^2\left(ax^2+2b+4c\right)=6x^{\text{4}}-20x^3-8x^2\)
Với mọi x
b)\(\left(ax+b\right)\left(x^2-cx+2\right)=x^3+x^2-2\)
Với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2\left(ax^2+2bx+4c\right)=6x^4-20x^3-8x^2\)
\(ax^2+2bx+4c=3x^2-10x-4\)
\(\left(a-3\right)x^2+\left(b-5\right)2x+4\left(c-1\right)=0\)
\(\left\{{}\begin{matrix}a-3=0\\b-5=0\\c-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3\\b=5\\c=1\end{matrix}\right.\)
( ax + b ) ( x2 - cx + 2 ) = x3a + bx2 - acx2 - bcx + 2ax + 2b = x3a + x2 ( b - ac ) - x ( bc - 2a ) + 2b
\(\Rightarrow\)x3a + x2 ( b - ac ) - x ( bc - 2a ) + 2b = x3 + x2 - 2
đồng nhất hê số, ta được : a = 1 ; b - ac = 1 ; bc - 2a = 0 ; 2b = -2
\(\Rightarrow\hept{\begin{cases}a=1\\b=-1\\c=-2\end{cases}}\)
Khai triển VT, ta có: \(VT=ax^3+\left(b+ac\right)x^2+\left(bc+2a\right)x+2b=x^3-x^2+2\)
Đồng nhất hệ số ta có hệ điều kiện:
\(\left\{{}\begin{matrix}a=1\\b+ac=-1\\bc+2a=0\\2b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=-2\end{matrix}\right.\)
\(\left(x^2+cx+2\right)\left(ax+b\right)=x^3+x^2-2\)
\(\Leftrightarrow ax^{3\:}+\left(ac+b\right)x^2+\left(2a+bc\right)x+2b=x^3+x^2-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\ac+b=1\\2a+bc=0\\2b=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=2\end{matrix}\right.\) ( TM )
Theo bài ra:
\(f\left(x\right)=\left(g\left(x\right)\right)^2\)
<=> \(x^4+ax^3+bx^2-8x+4=\left(x^2+cx+d\right)^2\)
<=> \(x^4+ax^3+bx^2-8x+4=x^4+c^2x^2+d^2+2.x^2.cx+2.cx.d+2x^2.d\)
<=> \(x^4+ax^3+bx^2-8x+4=x^4+2cx^3+\left(c^2+2d\right)x^2+2cdx+d^2\)
Cân bằng hệ số hai vế ta có:
\(\hept{\begin{cases}a=2c\\b=c^2+2d\\-8=2cd;4=d^2\end{cases}}\)
=> Tìm được a, b, c, d.
a) Sửa đề: \(2x^2\left(ax^2+2bx+4c\right)=6x^4-20x^3-8x^2\)
<=> \(2ax^4+4bx^3+8cx^2=6x^4-20x^3-8x^2\)
=> \(\left\{{}\begin{matrix}2a=6\\4b=-20\\8c=-8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=3\\b=-5\\c=-1\end{matrix}\right.\)
b) Ta có: \(\left(ax+b\right)\left(x^2-cx+2\right)=x^3+x^2-2\)
<=> \(ax^3-acx^2+2ax+bx^2-bcx+2b=x^3+x^2+2\)
<=> \(ax^3+x^2\left(b-ac\right)+x\left(2a-bc\right)+2b=x^3+x^2-2\)
=> \(\left\{{}\begin{matrix}ax^3=x^3\\\left(b-ac\right)x^2=x^2\\\left(2a-bc\right)x=0\\2b=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=1\\b-ac=1\\2a-bc=0\\b=-1\end{matrix}\right.\)
=> a,b,c ko có!
P/s: Đề có sai ko!