K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2021

Tham khảo nhé

AH
Akai Haruma
Giáo viên
29 tháng 1 2022

Lời giải:
Áp dụng định lý Menelaus cho tam giác $ABN$ và 3 điểm $E,I,M$ thẳng hàng thì:
$\frac{EA}{EB}.\frac{IB}{IN}.\frac{MN}{MA}=1$

$\Leftrightarrow \frac{EA}{EB}.\frac{MN}{MA}=1$

$\Leftrightarrow \frac{EA}{EB}=\frac{MA}{MN}(1)$

Tương tự với tam giác $ACN$ với $F, K,M$ thẳng hàng:

$\frac{FA}{FC}=\frac{MA}{MN}(2)$

Từ $(1); (2)\Rightarrow \frac{EA}{EB}=\frac{FA}{FC}$

Theo định lý Talet đảo thì $EF\parallel BC$ (đpcm)

AH
Akai Haruma
Giáo viên
29 tháng 1 2022

Hình vẽ:

Bài 1 :Trên cùng nửa mặt phẳng có chứa đoạn AB ,kẻ tia Mx sao cho góc AMx = 60 độ và tia My sao cho góc BMy = 60 độ . Trên Mx lấy điểm C sao cho MC = MA . Trên tia My lấy điểm D sao cho MD=MBa)Chứng minh AD=CBb)Lấy điểm E là trung điểm của AD . F là trung điểm của CB . Chứng minh EMF = 60 độBài 2 : C thuộc MN . Ix là đường trung trực của đoạn MC ( I thuộc MC), KI là đường trung trực của đoạn CN ( K...
Đọc tiếp

Bài 1 :Trên cùng nửa mặt phẳng có chứa đoạn AB ,kẻ tia Mx sao cho góc AMx = 60 độ và tia My sao cho góc BMy = 60 độ . Trên Mx lấy điểm C sao cho MC = MA . Trên tia My lấy điểm D sao cho MD=MB

a)Chứng minh AD=CB

b)Lấy điểm E là trung điểm của AD . F là trung điểm của CB . Chứng minh EMF = 60 độ

Bài 2 : C thuộc MN . Ix là đường trung trực của đoạn MC ( I thuộc MC), KI là đường trung trực của đoạn CN ( K thuộc CN) .Kẻ đường thẳng d đi qua C cắt Ix tại E và cắt KI tại F . Chứng minh ME//MF

Bài 3 :Cho tam giác ABC ( góc A < 90 độ ) . TẠi A kẻ Ã vuông góc với AC , M thuộc Ax sao cho AM=AC . M,B thuộc 2 nửa mặt phẳng đối nhau bờ AC . Tại A kẻ Ay vuông góc với AB , n thuộc Ay sao cho AN = AB ( N,C thuộc 2 nửa mặt phẳng đối nhau bờ AB )

a) chứng minh tam giác ABM = tam giác ANC

b) BM=CN

c) Bm vuông góc với CN

BÀI 4 Tam giác ABC , M là trung điểm của AB , N là trung điểm của AC . Trên tia đối của tia MN lấy điểm P sao cho NP = MN

a) tam giác AMN = tam giác CPN

b) CP = BM

c) MN//BC

d) nhận sét gì về MN so với BC

BÀi 5 cho tam giác ABC . từ C kẻ CX // với AB . Trên cạnh Ab lấy điểm M . Trên tia Cx lấy điểm N sao cho AM=CN. Nối MN cắt AC tại D

a) chứng minh OA=OC , OM =ON

b) Nối BO tia BO cắt Cx tại P . Chứng minh AB = CD

Các bạn giải được bài nào thì giải bài đấy cho mình nhé , mình cần gấp lắm rùi . Thank nha

1
9 tháng 12 2015

đừng có ns lung tung bọn mik muốn làm đó

15 tháng 2 2019

Ta có tam giác EPQ cân tại E và CQ là phân giác góc BCA, nên  E P Q ^ = E Q P ^ = H Q C ^ = 90 0 − H C Q ^ = 90 0 − P C K ^ .

Do đó  E P Q ^ + P C K ^ = 90 0 , nên  P K ⊥ A C .

a: Xét ΔAMB và ΔANC có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔAMB=ΔANC

Suy ra: AM=AN

b: Xét ΔAIM vuông tại I và ΔAKN vuông tại K có

AM=AN

\(\widehat{IAM}=\widehat{KAN}\)

Do đó: ΔAIN=ΔAKN

Suy ra: AI=AK

a: Xét ΔAPH có

AM vừa là đường cao, vừa là trung tuyến

=>ΔAPH cân tại A

=>AP=AH

=>AM là phân giác của góc PAH

Xét ΔAEP và ΔAEH có

AP=AH

góc EAP=góc EAH

AE chung

=>ΔAEP=ΔAEH

b: Xét ΔAHQ có

AN vừa là đường cao, vừa là trung tuyến

=>ΔAHQ cân tại A

=>AH=AQ=AP

a: Xét tứ giác AQHP có

AQ//HP

AP//HQ

=>AQHP là hình bình hành

Xet ΔAHQ và ΔHAP có

HA chung

HQ=AP

AQ=HP

=>ΔAHQ=ΔHAP

b: ΔFBC vuông tại F

mà FM là trung tuyến

nên FM=BC/2

ΔECB vuông tại E

mà EM là trung tuyến

nên EM=BC/2=FM

=>ΔMEF cân tại M

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AEF=góc ABC