Cho a2 + b2 + c2=1. CM: -\(\dfrac{1}{2}\le ab+bc+ca\le1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu có 2 số đồng thời bằng 0 BĐT tương đương \(0\le\dfrac{3}{4}\) hiển nhiên đúng
Nếu ko có 2 số nào đồng thời bằng 0:
\(VT=\dfrac{bc}{a^2+b^2+a^2+c^2}+\dfrac{ca}{a^2+b^2+b^2+c^2}+\dfrac{ab}{a^2+c^2+b^2+c^2}\)
\(VT\le\dfrac{bc}{2\sqrt{\left(a^2+b^2\right)\left(a^2+c^2\right)}}+\dfrac{ca}{2\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}}+\dfrac{ab}{2\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}}\)
\(VT\le\dfrac{1}{4}\left(\dfrac{b^2}{a^2+b^2}+\dfrac{c^2}{a^2+c^2}+\dfrac{a^2}{a^2+b^2}+\dfrac{c^2}{b^2+c^2}+\dfrac{a^2}{a^2+c^2}+\dfrac{b^2}{b^2+c^2}\right)=\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c\)
\(bc\le\dfrac{\left(b+c\right)^2}{4}\Rightarrow\dfrac{bc}{a^2+1}\le\dfrac{\left(b+c\right)^2}{4\left(a^2+1\right)}\) chứng minh tương tự với mấy cái còn lại ta dc \(\dfrac{bc}{a^2+1}+\dfrac{ac}{b^2+1}+\dfrac{ab}{c^2+1}\le\dfrac{1}{4}\left[\dfrac{\left(b+c\right)^2}{a^2+1}+\dfrac{\left(a+c\right)^2}{b^2+1}+\dfrac{\left(a+b\right)^2}{c^2+1}\right]\) .Thay a^2 +b^2 +c^2 =1 vào vế phải ta dc\(VT\le\dfrac{1}{4}\left[\dfrac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(a+c\right)^2}{2b^2+c^2+a^2}+\dfrac{\left(a+b\right)^2}{2c^2+a^2+b^2}\right]\)
áp dụng bunhiacopski dạng phân thức ta dc\(VT\le\dfrac{1}{4}\left[\dfrac{b^2}{a^2+b^2}+\dfrac{c^2}{a^2+c^2}+\dfrac{a^2}{b^2+a^2}+\dfrac{c^2}{b^2+c^2}+\dfrac{a^2}{c^2+a^2}+\dfrac{b^2}{c^2+b^2}\right]\) \(VT\le\dfrac{1}{4}\left[\dfrac{a^2+b^2}{a^2+b^2}+\dfrac{c^2+a^2}{c^2+a^2}+\dfrac{c^2+b^2}{c^2+b^2}\right]\) \(\Rightarrow VT\le\dfrac{1}{4}\left(1+1+1\right)=\dfrac{3}{4}\left(đpcm\right)\)
Lời giải:
$a^2+b^2+c^2-ab-bc-ac=0$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$
$\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Vì $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì:
$a-b=b-c=c-a=0$
$\Rightarrow a=b=c$
$\Rightarrow \frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1$
Khi đó:
$(\frac{a}{b}+1)(\frac{b}{c}+1)(\frac{c}{a}+1)=(1+1)(1+1)(1+1)=8$
Ta có đpcm.
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac>=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac>=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2>=0\)(luôn đúng)
Ta chứng minh BĐT sau cho các số dương:
\(x^5+y^5\ge xy\left(x^3+y^3\right)\)
\(\Leftrightarrow x^5-x^4y+y^5-xy^4\ge0\)
\(\Leftrightarrow\left(x^4-y^4\right)\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (đúng)
Áp dụng:
\(\dfrac{a^5+b^5}{ab\left(a+b\right)}\ge\dfrac{ab\left(a^3+b^3\right)}{ab\left(a+b\right)}=\dfrac{a^3+b^3}{a+b}=a^2-ab+b^2\)
Tương tự và cộng lại:
\(VT\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)=2-\left(ab+ca+ca\right)\)
\(VT\ge4-\left(ab+bc+ca\right)-2=4\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\)
\(VT\ge4\left(ab+bc+ca\right)-\left(ab+bc+ca\right)-2=3\left(ab+bc+ca\right)-2\) (đpcm)
Vì ab + bc + ca = 1 nên
a 2 + 1 = a 2 + ab + bc + ca = a(a + b) + c(a + b) = (a + c)(a + b)
b 2 + 1 = b 2 + ab + bc + ca = b(a + b) + c(a + b) = (b + c)(a + b)
c 2 + 1 = c 2 + ab + bc + ca = ( c 2 + bc) + (ab + ac)
= c(c + b) + a(b + c) = (a + c)(b + c)
Từ đó suy ra ( a 2 + 1 ) ( b 2 + 1 ) ( c 2 + 1 )
= (a + c)(a + b).(b + c)(a + b).(a + c)(b + c)
= ( a + c ) 2 ( a + b ) 2 ( b + c ) 2
Vậy ( a 2 + 1 ) ( b 2 + 1 ) ( c 2 + 1 ) = ( a + c ) 2 ( a + b ) 2 ( b + c ) 2
Đáp án cần chọn là: D
Vì a\(^2\); b\(^2\)và c\(^2\)là các số > hoặc = 0 và a\(^2\)+ b\(^2\)+ c\(^2\)= 1 => 0 < a\(^2\); b\(^2\); c\(^2\) < 1
=> \(\dfrac{-1}{2}\) < hoặc = ab + bc + ca < hoặc = 1