So sánh :
2017\(^{2018}\) và 2018\(^{2017}\)
Mình cần lời giải đầy đủ , mọi người làm giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
2017 :2018 = 0,9995044598612488
mả 2018 : 2017 = 1,00049578520526
suy ra 2017 / 2018 < 2018 / 2017
Bạn Nguyễn Quang Kiên trả lời sai rồi , ở kia là số mũ chứ đâu phải phân số đâu , sao làm vậy được
\(A=\frac{2017^{2018}+1}{2017^{2018}-3}\)\(=\frac{2017^{2018}-3+4}{2017^{2018}-3}\)\(=1+\frac{4}{2017^{2018}-3}\)
\(B=\frac{2017^{2018}-1}{2017^{2018}-5}=\frac{2017^{2018}-5+4}{2017^{2018}-5}\)\(=1+\frac{4}{2017^{2018}-5}\)
Vì \(2017^{2018}-3>2017^{2018}-5\)(vì cái nào trừ đi ít thì còn nhiều,cái nào trừ đi nhiều thì còn ít)
\(\Rightarrow1+\frac{4}{2017^{2018}-3}< 1+\frac{4}{2017^{2018}-5}\)(vì trong 2 phân số cùng tử, phân số nào có mẫu nhỏ hơn thì lớn hơn)
\(\Rightarrow A< B\)
Mình sửa lại đề bài nha!Đề của mình mới đúng!CHÚC BẠN HỌC TỐT!
Ta có :
A = \(\frac{2017^{2018}}{2017^{2018}}+\frac{1}{-3}\)= 1 + \(\frac{1}{-3}\)
B = \(\frac{2017^{2018}-1}{2017^{2018}-5}\)= \(\frac{2017^{2018}-5}{2018^{2018}-5}+\frac{4}{2017^{2018}-5}\)= 1 + \(\frac{4}{2017^{2018}-5}\)
Mà 1 + \(\frac{4}{2017^{2018}-5}\)> 1 + \(\frac{1}{-3}\)Do đó A < B
Vậy A < B
#)Giải :
\(Q=2+\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)
Ta thấy : \(2>\frac{2016}{2017};2>\frac{2017}{2018};2>\frac{2018}{2019}\left(1\right)\)
\(\frac{2016}{2017+2018+2019}< \frac{2016}{2017}\left(2\right)\)
\(\frac{2017}{2017+2018+2019}< \frac{2017}{2018}\left(3\right)\)
\(\frac{2018}{2017+2018+2019}< \frac{2018}{2019}\left(4\right)\)
Từ (1) (2) (3) (4) \(\Rightarrow P>Q\)
Ta có:
\(\frac{2017.2019}{2018.2018}\)
\(=\frac{2017.\left(2018+1\right)}{\left(2017+1\right).2018}\)
\(=\frac{2017.2018+2017}{2017.2018+2018}\)
Vì \(2017.2018+2017< 2017.2018+2018\)( tử nhỏ hơn mẫu )
\(\Rightarrow\frac{2017.2018+2017}{2017.2018+2018}< 1\)
Vậy \(\frac{2017.2019}{2018.2018}< 1\)
( Mk nghĩ vậy )
~~~~~~~Hok tốt~~~~~~~
\(\frac{2017.2019}{2018.2018}=\frac{2017.\left(2018+1\right)}{2018.\left(2017+1\right)}=\frac{2017.2018+2017}{2018.2017+2018}\)
\(2017< 2018\Rightarrow2017.2018+2017< 2018.2017+2018\Rightarrow\frac{2017.2018+2017}{2018.2017+2018}< 1\Rightarrow\frac{2017.2019}{2018.2018}< 1\)
#)Giải :
Ta có : \(A=\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2019}< 1+1+1\)
\(\Rightarrow A< 3\)
Mình giải thế này cho ngắn gọn, với lại nhanh ^^
1: so sánh 2016/2017+2017/2018
vì 2016/2017 > 1/2017 >1/2018 =
> 2016/2017+2017/2018 >1/2018+2017/2018=1
vậy .....
20172018 >20182017
vì số mũ 2018 lớn hơn số mũ 2017 nên lớn hơn.
bạn tik giúp mình nha.
Bạn cho mk lời giải cụ thể đi !