K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2017

Cần chứng minh \(a^4\ge4b\left(a-b\right)\Leftrightarrow\left(a-2b\right)^2\ge0\) (đúng)

\(a^2\ge4b\left(a-b\right)\Leftrightarrow3a^2\ge12b\left(a-b\right)\left(1\right)\)

Ta chứng minh \(2a^3-3a^2+1\ge0\)

\(\Leftrightarrow2a^3-2a^2-a^2+1\ge0\)

\(\Leftrightarrow2a^2\left(a-1\right)-\left(a-1\right)\left(a+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)\left(2a^2-a-1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)\left(a-1\right)\left(2a+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)\ge0\left(a>0\right)\left(2\right)\)

\(3a^2\ge12b\left(a-b\right)\) theo \(\left(1\right)\)

\(\Rightarrow2a^3-12b\left(a-b\right)+1\ge2a^3-3a^2+1\ge0\) (theo \(\left(2\right)\))

27 tháng 5 2017

dòng đầu ghi lộn rồi kìa a4->a2

Áp dụng BĐT Cô si cho a,b>0 ta có: 

\(a+b\ge2\sqrt{ab}\)(1)

\(9+ab\ge2.3\sqrt{ab}\)(2) 

Từ (1) và (2) Suy ra: 

\(\left(a+b\right)\left(9+ab\right)\ge12ab\)

\(\Rightarrow a+b\ge\frac{12ab}{9+ab}\)

25 tháng 1 2018

Có : (x-y)^2 >= 0

<=> x^2-2xy+y^2 >= 0

<=> x^2+y^2 >= 2xy

<=> x^2+2xy+y^2 >= 4xy

<=> (x+y)^2 >= 4xy

Với x,y > 0 thì chia 2 vế bđt cho (x+y).xy > 0 ta được :

x+y/xy >= 4/x+y

<=> 1/x + 1/y >= 4xy

=> ĐPCM

Dấu "=" xảy ra <=> x=y > 0

Tk mk nha

22 tháng 11 2016

\(\frac{a+b}{2}\)\(\ge\)ab

<=> \(\frac{a+b}{2}\)- ab \(\ge\)0

<=> \(\frac{a+b-2ab}{2}\)\(\ge\)0

<=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\) 0

Đúng, vì (a - b) 2 \(\ge\)0 vs mọi a, b

22 tháng 11 2016

tích nha!

26 tháng 7 2018

Link: https://vn.answers.yahoo.com/question/index?qid=20100612215240AA1bp3C

26 tháng 7 2018

Câu hỏi của Hạnh Tâm Nguyễn - Toán lớp 9 | Học trực tuyến

29 tháng 4 2020

1, Vì m > 2

\(\Rightarrow\) m - 2 > 2 - 2

\(\Rightarrow\) m(m - 2) > m(2 - 2)

\(\Rightarrow\) m2 - 2m > 0

a < 0; b < 0; a > b

\(\Rightarrow\) \(\frac{1}{a}< \frac{1}{b}\) (Vì mẫu a > b nên phân số \(\frac{1}{a}< \frac{1}{b}\))

Bạn ơi, đề cho a > b thì làm sao chứng minh được a \(\ge\) b hả bạn

Chúc bn học tốt!!

19 tháng 12 2016

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(x+\frac{1}{x}\ge2\sqrt{x\cdot\frac{1}{x}}=2\)

Dấu "=" xảy ra khi \(x=1\)

Bài 2:

Áp dụng BĐT AM-GM ta có:

\(a^2+b^2+c^2+d^2\ge4\sqrt[4]{a^2b^2c^2d^2}=4\) (1)

\(ab+cd\ge2\sqrt{abcd}=2\) (2)

\(ac+bd\ge2\sqrt{acbd}=2\) (3)

\(ad+bc\ge2\sqrt{adbc}=2\) (4)

Cộng theo vế của (1),(2),(3),(4) ta có điều phải chứng minh

Dấu "=" khi \(\begin{cases}a=b=c=d\\abcd=1\end{cases}\)\(\Rightarrow a=b=c=d=\frac{1}{4}\)

 

19 tháng 12 2016

1) \(x+\frac{1}{x}\ge2\left(1\right)\)

<=> \(\frac{x^2+1}{x}\ge2\)

<=> x2 + 1 \(\ge\)2x

<=> x2 + 1 - 2x \(\ge\) 0

<=> (x - 1)2 \(\ge\)0 (2)

Bđt (2) đúng vậy bđt (1) được chứng minh

b) Áp dụng bđt AM-GM cho 10 số dương ta có:

a2+b2+c2+d2+ab+ac+ad+bc+bd+cd

\(\ge10\sqrt[10]{a^2.b^2.c^2.d^2.ab.ac.ad.bc.bd.cd}=10\sqrt[10]{\left(a.b.c.d\right)^5}\)

\(=10\sqrt[10]{1}=10\left(đpcm\right)\)

 

29 tháng 8 2016

Bài 1: 

a) + Nếu a/b > 1 thì a/b > b/b => a > b

+ Nếu a > b thì a/b > b/b => a/b > 1 (đpcm)

b) + Nếu a/b < 1 thì a/b < b/b => a < b

+ Nếu a < b thì a/b < b/b => a/b < 1 (đpcm)

Bài 2: 

Do \(\frac{a}{b}>\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}.\frac{d}{c}< \frac{c}{d}.\frac{d}{c}\)

=> \(\frac{a.d}{b.c}< 1\Rightarrow a.d< b.c\left(đpcm\right)\)

2 tháng 9 2016

bai2

vi a/b > c/d

=>ad/bd >cd/bd

và ad/bd , cd/bd có mẫu chung là bd

<=>ad>cd