K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

18 tháng 12 2019

24 tháng 4 2017

9 tháng 11 2023

a) Ta có:
- M là trung điểm của AB, nên M là trung điểm của đoạn thẳng AB.
- P là trung điểm của SC, nên P là trung điểm của đoạn thẳng SC.
- I là trung điểm của SB, nên I là trung điểm của đoạn thẳng SB.

Vì M, P, I lần lượt là trung điểm của các đoạn thẳng AB, SC, SB, nên ta có:
2AM = AB, 2CP = CS, 2BI = BS.

Giả sử BC không song song với MP. Khi đó, ta có:
- MP cắt BC tại H.
- MP cắt SA tại K.
- MP cắt QN tại L.

Theo định lý , ta có:
AH/HC = AK/KS = AL/LQ.

Từ đó, ta có:
2AM/2CP = AK/KS = AL/LQ.

Tuy nhiên, ta đã biết rằng 2AM/2CP = AB/CS = BS/CS = BI/CS = 2BI/2CP.

Vậy ta có:
2BI/2CP = AK/KS = AL/LQ.

Do đó, ta có AK = AL và KS = LQ.

Từ đó, ta suy ra K = L và Sẽ có MP song song với BC.

Vậy BC // (IMP).

b) Thiết diện của mặt phẳng (α) với hình chóp là một hình tam giác. Để xác định hình tam giác này, cần biết thêm thông tin về góc giữa mặt phẳng (α) và mặt phẳng đáy ABC.

c) Đường thẳng CN và mặt phẳng (SMQ) giao nhau tại một điểm. Để tìm giao điểm này, cần biết thêm thông tin về góc giữa đường thẳng CN và mặt phẳng (SMQ).

--thodagbun--

(Bn tham khảo cách lm đy nhe )

NV
7 tháng 1

ABCD là tứ diện đều \(\Rightarrow AG\perp\left(BCD\right)\Rightarrow AG\perp DG\)

Gọi E là trung điểm BC, do G là trọng tâm BCD nên theo tính chất trọng tâm

\(\dfrac{DG}{DE}=\dfrac{2}{3}\)

Qua G kẻ đường thẳng song song BC cắt BD và CD tại M và N

Ta có: \(DE=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều) \(\Rightarrow DG=\dfrac{2}{3}DE=\dfrac{a\sqrt{3}}{3}\)

Pitago tam giác vuông ADG: \(AG=\sqrt{AD^2-DG^2}=\sqrt{a^2-\left(\dfrac{a\sqrt{3}}{3}\right)^2}=\dfrac{a\sqrt{6}}{3}\)

Định lý talet: \(\dfrac{GN}{CE}=\dfrac{DG}{DE}=\dfrac{2}{3}\Rightarrow GN=\dfrac{2}{3}CE=\dfrac{2}{3}.\dfrac{a}{2}=\dfrac{a}{3}\)

\(\Rightarrow MN=2GN=\dfrac{2a}{3}\)

\(S_{AMN}=\dfrac{1}{2}AG.MN=\dfrac{a^2\sqrt{6}}{9}\)

NV
7 tháng 1

loading...

25 tháng 12 2021

a: Xét tứ giác AMBN có 

Q là trung điểm của AB

Q là trung điểm của MN

Do đó: AMBN là hình bình hành

mà MA=MB

nên AMBN là hình thoi

29 tháng 5 2018

Chọn A

Vì tam giác SAC vuông tại A

nên tam giác ABC vuông tại A. Chọn hệ trục Oxyz như hình vẽ

Ta có 

A(0;0;0), B(3;0;0), C(0;4;0), S(0;0;3)

Vì G là trọng tâm của tứ diện SABC nên ta có

Gọi H là hình chiếu của điểm A lên mặt phẳng  α . Theo tính chất của tam diện vuông ta có

Dấu “=” xảy ra khi H ≡ G tức mặt phẳng  α đi qua điểm G và vuông góc với đường thẳng OG.

Vậy giá trị nhỏ nhất của T  bằng  8 17

16 tháng 8 2018

Chưa có ai trả lời câu hỏi này, hãy gửi một câu trả lời để giúp tran cong hoai giải bài toán này.

a: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hình chữ nhật

b: AC=8cm

\(S_{ABC}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

c: Đề sai rồi bạn

AM//NB mà