Các bạn giúp mình với bài 4,bài 5 ,bài 6 và bài 7 ạ
Mình cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 5:
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: Xét tứ giác AEDF có
\(\widehat{EAF}=\widehat{AFD}=\widehat{AED}=90^0\)
Do đó: AEDF là hình chữ nhật
mà AD là tia phân giác của \(\widehat{FAE}\)
nên AEDF là hình vuông
=>1/5 so cam la 6 qua
=> so cam la 30 qua
=>so quyt la 5 qua
Bài 1:
\(a+b=15\)
\(\Rightarrow\left(a+b\right)^2=225\)
\(\Leftrightarrow a^2+2ab+b^2=225\)
\(\Leftrightarrow a^2+4+b^2=225\)
\(\Leftrightarrow a^2+b^2=221\)
Ta có: \(\left(a-b\right)^2=a^2-2ab+b^2\)
\(=221-4\)
\(217\)
Bài 2:
Vì \(x:7\)dư 6
\(\Rightarrow x\equiv-1\left(mod7\right)\)
\(\Rightarrow x^2\equiv1\left(mod7\right)\)
Vậy \(x^2:7\)dư 1
Đề ko rõ ràng \(\sqrt{x^2}+x+\dfrac{1}{4}\) hay \(\sqrt{x^2+x+\dfrac{1}{4}}\)??
Bài 4:
b: Xét ΔABK vuông tại A có AD là đường cao ứng với cạnh huyền BK
nên \(BD\cdot BK=BA^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot BC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BD\cdot BK=BH\cdot BC\)
1. hard enough
2. well enough
3. warm enough
4. rich enough
5. enough money
6. enough time
7. strong enough
8. enough French
9. far enough
10. enough chairs
(P/s: nãy h ngồi làm mợt lắm á , tick cho tui nghen (~ ̄▽ ̄)~)