Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cho điểm M thay đổi trên cạnh SD. Gọi I, J lần lượt là giao điểm của AN với BM và AM với BN. Chứng minh rằng khi M chạy trên cạnh SD thì I, J lần lượt chạy trên các đường thẳng cố định ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong mặt phẳng (ABCD) ta có AC cắt BD tại O, IJ cắt BD tại E.
Trong mặt phẳng (SBD), ME cắt SO tại G. ta có G thuộc (MIJ)
(MIJ) chứa IJ // AC nên giao tuyến của (MIJ) với (SAC) là đường thẳng qua G và song song với AC, đường thẳng này cắt SA tại N, cắt SC tại P.
Vậy thiết diện là ngũ giác MNIJ.
Đáp án D
a) Ta có: \(\left( {ABM} \right) \cap \;\left( {ABCD} \right) = AB,\;\left( {ABCD} \right) \cap \;\left( {SCD} \right) = CD,\;AB//CD\).
Suy ra giao tuyến của (ABM) và (SCD) là đường thẳng qua M song song với AB và CD.
Qua M kẻ MK song song với CD (K thuộc SD).
Vậy, K là giao điểm của (AMN) và SD.
Xét tam giác SCD ta có: MK //CD suy ra \(\frac{{SK}}{{SD}} = \frac{{SM}}{{SC}} = \frac{1}{3}\)
b) Xét tam giác SCD ta có: MK //CD suy ra \(\frac{{MK}}{{CD}} = \frac{{SM}}{{SC}} = \frac{1}{3}\)
Lại có \(\frac{{AN}}{{AB}} = \frac{1}{3}\), AB=CD suy ra AN = MK.
Xét tứ giác ANMK ta có: AN = MK, AN // MK suy ra ANMK là hình bình hành.
Do đó MN // AK hay MN // (SAD).
a.
Do O là tâm hbh \(\Rightarrow\) O là trung điểm AC
\(\Rightarrow OJ\) là đường trung bình tam giác SAC
\(\Rightarrow OJ||SA\)
Mà \(SA\in\left(SAC\right)\Rightarrow OJ||\left(SAC\right)\)
\(SA\in\left(SAB\right)\Rightarrow OJ||\left(SAB\right)\)
b. O là trung điểm BD, I là trung điểm BC
\(\Rightarrow OI\) là đườngt rung bình tam giác BCD
\(\Rightarrow OI||CD\)
Mà \(CD\in\left(SCD\right)\Rightarrow OI||\left(SCD\right)\)
Tương tự ta có IJ là đường trung bình tam giác SBC \(\Rightarrow IJ||SB\Rightarrow IJ||\left(SBD\right)\)
c. Ta có I là trung điểm BC, O là trung điểm AC
\(\Rightarrow M\) là trọng tâm tam giác ABC
\(\Rightarrow BM=\dfrac{2}{3}BO=\dfrac{2}{3}.\dfrac{1}{2}BD=\dfrac{1}{3}BD\)
\(\Rightarrow\dfrac{BM}{BD}=\dfrac{1}{3}\)
Theo giả thiết \(SK=\dfrac{1}{2}KD=\dfrac{1}{2}\left(SD-SK\right)\Rightarrow SK=\dfrac{1}{3}SD\)
\(\Rightarrow\dfrac{SK}{SD}=\dfrac{1}{3}=\dfrac{BM}{BD}\Rightarrow KM||SB\) (Talet đảo)
\(\Rightarrow MK||\left(SBC\right)\)
a.
Do M là trung điểm SA, O là trung điểm AC
\(\Rightarrow OM\) là đường trung bình tam giác SAC \(\Rightarrow OM||SC\Rightarrow OM||\left(SBC\right)\) (1)
N là trung điểm CD, O là trung điểm AC \(\Rightarrow ON\) là đường trung bình ACD
\(\Rightarrow ON||AD\Rightarrow ON||BC\Rightarrow ON||\left(SBC\right)\) (2)
Mà \(ON\cap OM=O\) ; \(OM;ON\in\left(OMN\right)\) (3)
(1);(2);(3) \(\Rightarrow\left(OMN\right)||\left(SBC\right)\)
b.
J cách đều AB, CD \(\Rightarrow J\) thuộc đường thẳng d qua O và song song AB, CD
- Nếu J trùng O \(\Rightarrow OI\) là đường trung bình tam giác SBD \(\Rightarrow OI||SB\Rightarrow OI||\left(SAB\right)\)
Hay \(IJ||\left(SAB\right)\)
- Nếu J không trùng O, ta có \(\left\{{}\begin{matrix}IO||SB\left(đtb\right)\Rightarrow IO||\left(SAB\right)\\d||AB\Rightarrow IJ||AB\Rightarrow OJ||\left(SAB\right)\end{matrix}\right.\)
\(\Rightarrow\left(OIJ\right)||\left(SAB\right)\Rightarrow IJ||\left(SAB\right)\)
a.
Do M là trung điểm SA, O là trung điểm AC
là đường trung bình tam giác SAC (1)
N là trung điểm CD, O là trung điểm AC là đường trung bình ACD
(2)
Mà ; (3)
(1);(2);(3)
b.
J cách đều AB, CD thuộc đường thẳng d qua O và song song AB, CD
- Nếu J trùng O là đường trung bình tam giác SBD
Hay
- Nếu J không trùng O, ta có
Trong mặt phẳng (ABCD) ta có AC cắt BD tại O, IJ cắt BD tại E. trong mặt phẳng (SBD), ME cắt SO tại G. Ta có G thuộc (MIJ). (MIJ) chứa IJ // AC nên giao tuyến của (MIJ) với (SAC) là đường thẳng qua G và song song với AC.
Đáp án D
Ta có: \(SB=4MB=4\left(SB-SM\right)\Rightarrow\dfrac{SM}{SB}=\dfrac{3}{4}\)
Tương tự: \(\dfrac{SN}{SD}=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{SM}{SB}=\dfrac{SN}{SD}\)
\(\Rightarrow MN||BD\) (định lý Talet đảo)
\(\Rightarrow BD||\left(MNP\right)\)
Gọi K=AM∩SOK=AM∩SO. Mặt phẳng (P) đi qua K và song song với BD nên cắt (SBD) theo giao tuyế d' đi qua K và song song với BD. Vậy qua K, ta vẽ d' song song với BD. Đường thẳng d' cắt SB và SD lần lượt tại E và F. Đây là các điểm cần tìm.
\(I=AN\cap BM\) nên I lần lượt thuộc hai mặt phẳng (SAC) và (SBD). Như vậy I phải thuộc giao tuyến SO của hai mặt phẳng này, ở đây \(O=AC\cap BD\). Tương tự, ta có J thuộc d