S = 5/20 + 5/21 + 5/22 + 5/23 + 5/24
tính giá trị biểu thức và chứng minh S > 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do \(\frac{5}{20}< 1;\frac{5}{21}< 1;\frac{5}{22}< 1;\frac{5}{23}< 1;\frac{5}{24}< 1\)
\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}< 1\)
Vậy S < 1
Mk nghĩ thế bn ạ
Ai thấy tớ đúng ủng hộ nha
Ta có :
\(\frac{5}{20}>\frac{5}{25}\)
\(\frac{5}{21}>\frac{5}{25}\)
\(\frac{5}{22}>\frac{5}{25}\)
\(\frac{5}{23}>\frac{5}{25}\)
\(\frac{5}{24}>\frac{5}{25}\)
\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>5.\frac{5}{25}=1\)
\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>1\)
ta có S=5/20+5/21+5/22+5/23+5/24>5/25+5/25+5/25+5/25+5/25=5/25*5=1
=>đpcm
Ta có:5/20>5/25
5/21>5/25
5/22>5/25
5/23>5/25
5/24>5/25
=>S=5/20+5/21+5/22+5/23+5/24>5/25+5/25+5/25+5/25+5/25=1
=>5/20+5/21+5/22+5/23+5/24>1
DỄ
DO: 5/20 <1
5/21<1
5/22<1
5/23<1
5/24<1
=> 5/20+5/21+5/22+5/23+5/24<1
hay S<1 ( ĐPCM)
ĐÚNG NÈ ỦNG HỘ
trả lời thế này chắc được điểm cao đó :
Ta thấy : \(\frac{5}{20}>\frac{5}{24}\); \(\frac{5}{21}>\frac{5}{24}\); \(\frac{5}{22}>\frac{5}{24}\); \(\frac{5}{23}>\frac{5}{24}\); \(\frac{5}{24}=\frac{5}{24}\)
\(\Rightarrow\)\(S=\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>\frac{5}{24}+\frac{5}{24}+\frac{5}{24}+\frac{5}{24}+\frac{5}{24}=\frac{5}{24}.5=\frac{25}{24}\)
\(S>\frac{25}{24}>\frac{24}{24}=1\)
\(\Rightarrow S>1\)
Ta có :
1<5/24x5
Mà 5/20>5/24
5/21>5/24
5/22>5/24
5/23>5/24
5/24=5/24
=>5/20+5/21+5/22+5/23+5/24>5x5/24
S>1
B=1-2-3+4+5-6-7+8+..........+21-22-23+24
B=(1-2-3+4)+(5-6-7+8)+.......+(21-22-23+24)
B=0+0+............+0
B=0
\(S=5.\left(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{49}\right)\)
Xét \(A=\frac{1}{20}+\frac{1}{21}+...+\frac{1}{49}\). Chứng minh 3/5 < A < 8/5
+ Có: \(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{29}<\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{1}{2}\)
\(\frac{1}{30}+\frac{1}{31}+...+\frac{1}{34}<\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{15}{30}=\frac{1}{2}\)
\(\frac{1}{35}+\frac{1}{36}+...+\frac{1}{49}<\frac{1}{35}+\frac{1}{35}+...+\frac{1}{35}=\frac{15}{35}=\frac{3}{7}<\frac{3}{5}\)
Cộng từng vế => \(A<\frac{1}{2}+\frac{1}{2}+\frac{3}{5}=\frac{8}{5}\Rightarrow S<8\) (1)
+) Có :
\(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}>\frac{1}{25}.5=\frac{1}{5}\)
\(\frac{1}{25}+\frac{1}{26}+...+\frac{1}{30}>\frac{1}{30}.6=\frac{1}{5}\)
\(\frac{1}{30}+...+\frac{1}{37}>\frac{1}{40}.8=\frac{1}{5}\)
=> \(\frac{1}{20}+...+\frac{1}{37}>\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=\frac{3}{5}\)
=> \(A>\frac{1}{20}+...+\frac{1}{37}>\frac{3}{5}\Rightarrow S>3\) (2)
Từ (1)(2) => 3 < S < 8
Này Trần Thị Loan à, tớ thấy cậu nên
thay chữ "xét" ở chỗ "xét A" thành chữ"đặt"
nghe hợp lý hơn.
Giải:
Ta có:
\(\dfrac{5}{20}>\dfrac{5}{25}\) ; \(\dfrac{5}{21}>\dfrac{5}{25}\) ;\(\dfrac{5}{22}>\dfrac{5}{25}\) ; \(\dfrac{5}{23}>\dfrac{5}{25}\) ; \(\dfrac{5}{24}>\dfrac{5}{25}\)
\(\Rightarrow S=\dfrac{5}{20}+\dfrac{5}{21}+\dfrac{5}{22}+\dfrac{5}{23}+\dfrac{5}{24}>\dfrac{5}{25}+\dfrac{5}{25}+\dfrac{5}{25}+\dfrac{5}{25}+\dfrac{5}{25}=1\)
Vậy \(S=\dfrac{5}{20}+\dfrac{5}{21}+\dfrac{5}{22}+\dfrac{5}{23}+\dfrac{5}{24}>1\) ( đpcm )
Giải:
Dễ thấy:
\(20< 25\Leftrightarrow\dfrac{5}{20}>\dfrac{5}{25}\)
\(21< 25\Leftrightarrow\dfrac{5}{21}>\dfrac{5}{25}\)
\(.....................\)
\(24< 25\Leftrightarrow\dfrac{5}{24}>\dfrac{5}{25}\)
Cộng vế theo vế ta có:
\(S>\dfrac{5}{25}+\dfrac{5}{25}+...+\dfrac{5}{25}=\dfrac{5}{25}.5=\dfrac{25}{25}=1\)
Vậy \(S>1\) (Đpcm)