Cho a,b,c thuộc Z, biết ab - ac + bc - c2 = -1. Tính tổng a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab-ac+bc-c2=-1
=> a.(b-c)+c.(b-c)=-1
=> (b-c).(a+c)=-1
=> (b-c).(a+c)=-1.1=1.(-1)
+) b-c=-1; a+c=1
=> (b-c)+(a+c) = b-c+a+c = a + b = -1 + 1 = 0
=> a và b đối nhau
+) b-c=1; a+c=-1
=> (b-c)+(a+c) = b-c+a+c = a + b = 1 + (-1) = 0
=> a và b đối nhau
Vậy 2 số a và b đối nhau.
Ta có: (ab - ac)+ (bc - cc) = -1
=> a. (b - c)+ c. (b - c)= -1
=> (b - c). (a + c)= -1
=> b-c và a+c thuộc Ư(-1)={-1;1}
Vậy b-c=1 và a+c=-1 hoặc a+c=1 và b-c=-1
ta thấy b-c và a+c luôn luôn đối nhau
ta sẽ có: a+c=-(b-c)
=>a+c=-b+c
=>a = -b
Vậy a và b đối nhau nên sẽ có tổng là 0
Cảm ơn bạn Ma Ca Row đã giúp mình làm bài này. Mình cũng đã gặp rắc rối khi giải bài này. Cảm ơn bạn.
Thân ái,
Cao Thành Long
\(ab-ac+bc-c^2=-1\)
<=> \(a\left(b-c\right)+c\left(b-c\right)=-1\)
<=> \(\left(a+c\right)\left(b-c\right)=-1\)
Mà \(a,b,c\in Z\Rightarrow\left\{{}\begin{matrix}a+c\in Z\\b-c\in Z\end{matrix}\right.\)
- Nếu \(\left\{{}\begin{matrix}a+c=1\\b-c=-1\end{matrix}\right.\) => a + b = 0
- Nếu \(\left\{{}\begin{matrix}a+c=-1\\b-c=1\end{matrix}\right.\) => a + b = 0
Vậy M = 0
ab - ac + bc - c2= -1
a(b-c) + c(b-c) = -1
(a+b) . (b-c) = -1
Nếu a + c = 1 thì b - c = -1
a = 1 - c; b = c - 1
Vậy a và b là hai số đối nhau.=>(đpcm)
ab-ac+bc-c2=-1
=>a.(b-c)+c.(b-c)=-1
=>(b-c)(a+c)=-1=1.(-1)=(-1).1
=>b-c=1 và a+c=-1 hoặc b-c=-1 hoặc a+c=1
=>(b-c)+(a+c)=1+(-1) hoặc (b-c)+(a+c)=-1+1
=>b-c+a+c=0 hoặc b-c+a+c=0
=>a+b=0
a=-1
b=1
c=0