K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

ĐKXĐ: \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ne0\) với mọi x

\(\Leftrightarrow x^2-x+1=Px^2+Px+P\)

\(\Leftrightarrow\left(P-1\right)x^2+\left(P+1\right)x+P-1=0\) (1)

Phương trình (1) ẩn x phải có nghiệm

+) P = 1 => x = 0

+) \(P\ne1\) thì (1) là phương trình bậc 2. Phương trình (1) có nghiệm khi

\(\Delta=\left(P+1\right)^2-4\left(P-1\right)^2>0\) \(\Leftrightarrow-3P^2+10P-3\ge0\Leftrightarrow P^2-\dfrac{10}{3}P+1\le0\)

\(\Leftrightarrow\left(P-\dfrac{5}{3}\right)^2\le\dfrac{16}{9}\Leftrightarrow-\dfrac{4}{3}\le P-\dfrac{5}{3}\le\dfrac{4}{3}\)

\(\Leftrightarrow\dfrac{1}{3}\le P\le3\)

+) \(P=\dfrac{1}{3}\Leftrightarrow-\dfrac{2}{3}x^2+\dfrac{4}{3}x-\dfrac{2}{3}=0\Leftrightarrow x=1\)

+) \(P=3\Leftrightarrow2x^2+4x+2=0\Leftrightarrow x=-1\)

Vậy Min P = \(\dfrac{1}{3}\) khi x = 1, Max P = 3 khi x = -1

12 tháng 5 2017

Ap dụng bất đẳng thức cosy cho 3 số a+b+c\(\ge\)3\(\sqrt[3]{abc}\) thi ta có

x2-x+1\(\ge\)3\(\sqrt[3]{x^2.-x.1}\)=3.-x

x2+x+1\(\ge\)3\(\sqrt[3]{x^2}x1\)=3.x

do đó P\(\ge\)\(\dfrac{3.-x}{3.x}\)=-1

14 tháng 5 2017

P(x^2+x+1)=x^2-x+1

=>Px^2+Px+P-x^2+x-1=0

=>(Px^2-x^2)+(Px+x)+(P-1)=0

=>x^2(P-1)+x(P+1)+(P-1)=0 (1) 

coi đây là 1 pt bậc 2 ẩn x ,để P tổn tại max min thì phải có x thoả mãn max,min đó,tức là (1) có nghiệm

Xét delta = (P+1)^2-4(P-1)^2 >/ 0 =>P^2+2P+1-4(P^2-2P+1)=P^2+2P+1-4P^2+8P-4=-3P^2+10P-3

=(P-3)(1-3P)  >/ 0 => 1/3<=P<=3 => minP=1/3,maxP=3  

15 tháng 3 2017

Vì | x -3 | > hoặc = 0

Suy ra : |x-3|+50 >hoặc =50

Vì A nhỏ nhất suy ra | x-3 | +50 =50

Suy ra x-3 =0

Suy ra x=3

Vậy GTNN của A = 50 khi x=3

Câu 2:

ĐKXĐ: x<>0

\(B=\dfrac{-x^2-x-1}{x^2}\)

\(=-1-\dfrac{1}{x}-\dfrac{1}{x^2}\)

\(=-\left(\dfrac{1}{x^2}+\dfrac{1}{x}+1\right)\)

\(=-\left(\dfrac{1}{x^2}+2\cdot\dfrac{1}{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-\left(\dfrac{1}{x}+\dfrac{1}{2}\right)^2-\dfrac{3}{4}< =-\dfrac{3}{4}\forall x< >0\)

Dấu '=' xảy ra khi 1/x+1/2=0

=>1/x=-1/2

=>x=-2

1 tháng 8 2019

\(A=x^2-12x+7=x^2-12x+36-29\)

\(=\left(x-6\right)^2-29\ge-29\)

Vậy \(A_{min}=-29\Leftrightarrow x=6\)

1 tháng 8 2019

\(C=x-x^2-4=-\left(x^2-x+4\right)\)

\(=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)

\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{3}{4}\le-\frac{3}{4}\)

Vậy \(C_{min}=\frac{-3}{4}\Leftrightarrow x=\frac{1}{2}\)

23 tháng 5 2023

Biểu thức nào em?

24 tháng 5 2023

cả hai ạ

30 tháng 12 2016

ối giời ơi con xin vái

30 tháng 12 2016

de qua phai ko ta