Tam giác ABC có \(\widehat{A}=75^0\). Tính \(\widehat{B}\) và \(\widehat{C}\), biết :
a) \(\widehat{B}=2\widehat{C}\)
b) \(\widehat{B}-\widehat{C}=25^0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
=> Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\) = 180o
100o + \(\widehat{B}+\widehat{C}\) = 180o
\(\widehat{B}+\widehat{C}\) = 180o - 100o
\(\widehat{B}+\widehat{C}\) = 80o
Góc B = (80o+50o):2 = 65o
=> \(\widehat{C}\) = 65o - 50o = 15o
Vậy \(\widehat{B}\) = 65o ; \(\widehat{C}\) = 15o
b)
Ta có : \(\widehat{3A}+\widehat{B}+\widehat{2C}\) = 180o
\(\widehat{3A}+\widehat{2C}\) = 180o - 80o
\(\widehat{3A}+\widehat{2C}\) = 100o
=> \(\widehat{A}\) = 100o:(3+2).3 = 60o
\(\widehat{C}\) = 100o - 60o = 40o
Vậy \(\widehat{A}\) = 60o ; \(\widehat{C}\) = 40o
Xét \(\Delta ABC\)có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (tổng ba góc trong 1 tam giác)
Nên \(\widehat{B}+\widehat{C}=180^o-\widehat{A}\)
<=> \(\widehat{B}+\widehat{C}=180^o-\widehat{A}=180^o-75^o=105^o\)
Mà \(\widehat{B}=2\widehat{C}\)
Suy ra : \(2\widehat{C}+\widehat{C}=105^o\)
\(\Leftrightarrow3\widehat{C}=105^o\)
\(\Rightarrow\widehat{C}=\frac{105^o}{3}=35^o\)
\(\widehat{B}=105^o-35^o=70^o\)
em gửi bài qua fb thầy HD cho, tìm fb của thầy bằng sđt: 0975705122, ở đây thầy không vẽ hình được
\(\widehat{A}=100^0\)
\(\Rightarrow\widehat{B}+\widehat{C}=180^0-100^0=80^0\)
Mà \(\widehat{B}-\widehat{C}=20^0\)
\(\Rightarrow\widehat{B}=\left(180^0+20^0\right):2=100^0\); \(\widehat{C}=\left(180^0-20^0\right):2=80^0\)
Áp dụng định lý tổng ba góc của 1 tam giác bằng 180\(^o\), ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(100^0+\widehat{B}+\widehat{C}=180^0\)
\(\widehat{B}+\widehat{C}=180^0-100^0\)
\(\widehat{B}+\widehat{C}=80^0\)
Mà \(\widehat{B}-\widehat{C}=20^0\left(gt\right)\)
\(\Rightarrow\widehat{B}=\left(80^0+20^0\right)\div2=50^0\)
\(\widehat{C}=50^0-20^0=30^0\)
Vậy \(\widehat{B}=50^0;\widehat{C}=30^0\)
\(\widehat{B}+\widehat{C}=140^0\)
\(\Leftrightarrow4\cdot\widehat{C}=140^0\)
\(\Leftrightarrow\widehat{C}=35^0\)
hay \(\widehat{B}=105^0\)
Vậy: ΔABC tù