Cho đa thức f(x) = ax^3 + bx^2 + cx +d trong đó a,b,c,d \(\in\) Z và thỏa mãn b = 3a + c
Chứng minh rằng f(1)*f(-2) là bình phương của một số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai rồi bn. Hình như f(2) đổi thành f(-2) và f(1).f(2) ms đúng
thay 1 vào f(x) sẽ đc: f(1) = a+b+c+d
thay -2 vào f(x) sẽ đc: f(-2) = -8a + 4b -2c + d
thay b= 3a+c vào 2 đa thức trên sẽ đc:
f(1)= 4a+2c+d và f(-2)= 4a+2c+d
=> f(1).f(-2)= ( 4a+2c+d )2
mà a,b,c,c thuộc Z suy ra biểu thức trên cx thuộc Z
vậy f(1).f(-2) là bình phương của một số nguyên
ko tránh khỏi thiếu sót, nếu làm sai ai đó sửa lại nhé. Thắc mắc gì cứ hỏi
_Hết_
Đề sai của bạn sai nhé
Hình như f(2) đổi thành f(-2) và f(1).f(2) mới đúng
Thay 1 vào f(x) sẽ đc: f(1) = a+b+c+d
Thay -2 vào f(x) sẽ đc: f(-2) = -8a + 4b -2c + d thay b= 3a+c
Vào 2 đa thức trên sẽ đc: f(1)= 4a+2c+d và f(-2)= 4a+2c+d => f(1).f(-2)= ( 4a+2c+d )\(^2\)
Mà a,b,c,c thuộc Z suy ra biểu thức trên cx thuộc Z
Vậy f(1).f(-2) là bình phương của một số nguyên
f(1) = a + b +c + d . Mà b = 3a + c nên f(1) = a + 3a + c + c +d = 4a + 2c + d (1)
f(-2) = - 8a + 4b - 2c + d
Mà b = 3a + c nên f(-2) = - 8a + 12a + 4c - 2c + d = 4a + 2c + d (2)
Từ (1) và (2) => f(1).f(-2) = (4a +2c +d)^2. Mà a, b, c, d thuộc z => 4a + 2c + d là số nguyên
Vậy f(1).f(-2) là bình phương của một số nguyên
Do b=3a+c
Ta có:f(1)=a+b+c+d=4a+2c+d
f(-2)=-8a+4b-2c+d=-8a+4.(3a+c)-2c+d=-8a+12a+4c-2c+d=4a+2c+d
=>f(1).f(-2)=(4a+2c+d)2
=>f(1).f(-2) là bình phương của 1 số nguyên
NGUYỄN HỮU BỀN
Suy ra
NGUYỄN HỮU ĐA