So sánh: A=\(\dfrac{1}{2}+\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}\)với 0,9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(S< \dfrac{1}{2}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{31}+\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{32}\) \(=\dfrac{1}{2}+\dfrac{3}{11}+\dfrac{2}{31}+\dfrac{2}{32}\)
\(=\dfrac{4909}{5456}< \dfrac{9}{10}\)
\(\Rightarrow S< \dfrac{9}{10}\)
Vậy \(S< \dfrac{9}{10}\)
Bài 1:
\(\dfrac{-13}{38}\) và \(\dfrac{29}{-88}\)
\(\dfrac{-13}{38}=\dfrac{-13.29}{38.29}=\dfrac{-377}{1102}\)
\(\dfrac{29}{-88}=\dfrac{-29}{88}=\dfrac{-29.13}{88.13}=\dfrac{-377}{1144}\)
Vì \(\dfrac{-377}{1102}< \dfrac{-377}{1144}\) nên \(\dfrac{-13}{38}< \dfrac{29}{-88}\)
\(\dfrac{-18}{31}\) và \(\dfrac{-1818}{3131}\)
\(\dfrac{-18}{31}\)
\(\dfrac{-1818}{3131}=\dfrac{-1818:101}{3131:101}=\dfrac{-18}{31}\)
Vì \(\dfrac{-18}{31}=\dfrac{-18}{31}\) nên \(\dfrac{-18}{31}=\dfrac{-1818}{3131}\)
Bài 2:
a) \(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-4}{156}+\dfrac{-3}{156}=\dfrac{-4+-3}{156}=\dfrac{-7}{156}\)
b) \(\dfrac{-6}{9}+\dfrac{-12}{16}=\dfrac{-2}{3}+\dfrac{-3}{4}=\dfrac{-8}{12}+\dfrac{-9}{12}=\dfrac{-17}{12}\)
Ta có :
\(\dfrac{1}{11}>\dfrac{1}{20}\\ \dfrac{1}{12}>\dfrac{1}{20}\\ ..........\\ \dfrac{1}{20}=\dfrac{1}{20}\)
\(\Rightarrow\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\\ \Rightarrow S>\dfrac{10}{20}\\ \Rightarrow S>\dfrac{1}{2}\)
\(1,A=-\dfrac{3}{4}.\left(0,125-1\dfrac{1}{2}\right):\dfrac{33}{16}-25\%\)
\(A=-\dfrac{3}{4}.\left(0,125-\dfrac{3}{2}\right):\dfrac{33}{16}-\dfrac{1}{4}\)
\(A=-\dfrac{3}{4}.\left(-\dfrac{11}{8}\right):\dfrac{33}{16}-\dfrac{1}{4}\)
\(A=\dfrac{33}{32}:\dfrac{33}{16}-\dfrac{1}{4}\)
\(A=\dfrac{33}{32}.\dfrac{16}{33}-\dfrac{1}{4}\)
\(A=\dfrac{1}{2}-\dfrac{1}{4}\)
\(A=\dfrac{2}{4}-\dfrac{1}{4}\)
\(A=\dfrac{1}{4}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2021.2022}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)
\(B=\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+...+\dfrac{4}{107.111}\)
\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{107}-\dfrac{1}{111}\)
\(=\dfrac{1}{3}-\dfrac{1}{111}=\dfrac{12}{37}\)
bn dựa vào câu trả lời của Quách Thùy Dung trong câu hỏi của The Dack Knight mà làm
giải chi tiết hơn