Trong các số sau, số nào bằng \(\dfrac{3}{7}\) ?
\(a=\dfrac{39}{91}\) \(b=\sqrt{\dfrac{3^2}{7^2}}\) \(c=\dfrac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{91^2}}\) \(d=\dfrac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{\dfrac{3^2}{7^2}}=\sqrt{\dfrac{9}{49}}=\sqrt{\dfrac{3}{7}}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{91^2}}=\dfrac{\sqrt{9}+\sqrt{1521}}{\sqrt{49}+\sqrt{8281}}=\dfrac{3+39}{7+91}=\dfrac{42}{98}\)
c)Tương tự câu b, ta đc:
\(\dfrac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\dfrac{3-39}{7-91}=\dfrac{-36}{86}=\dfrac{3}{7}\)
d)Tương tự câu a, ta đc:
\(\dfrac{\sqrt{39^2}}{\sqrt{91^2}}=\dfrac{39}{91}\)
Chúc Bạn Học Tốt!!!
a) \(\sqrt{\dfrac{3^2}{7^2}}=\sqrt{\left(\dfrac{3}{7}\right)^2}=\left|\dfrac{3}{7}\right|=\dfrac{3}{7}\)
b) \(\dfrac{\sqrt{3}^2+\sqrt{39}^2}{\sqrt{7}^2+\sqrt{91}^2}=\dfrac{\left|3\right|+\left|39\right|}{\left|7\right|+\left|91\right|}=\dfrac{3+39}{7+91}=\dfrac{42}{98}=\dfrac{3}{7}\)
c) \(\dfrac{\sqrt{3}^2-\sqrt{39}^2}{\sqrt{7}^2-\sqrt{91}^2}=\dfrac{\left|3\right|- \left|39\right|}{\left|7\right|-\left|91\right|}=\dfrac{3-39}{7-91}=\dfrac{-36}{-84}=\dfrac{3}{7}\)
d) \(\sqrt{\dfrac{39^2}{91^2}}=\sqrt{\left(\dfrac{39}{91}\right)^2}=\left|\dfrac{39}{91}\right|=\dfrac{39}{91}=\dfrac{3}{7}\)
\(\frac{\sqrt{3^2+\sqrt{39}^2}}{\sqrt{7^2}+\sqrt{91^2}}\)\(=\frac{3+39}{7+91}=\frac{42}{98}=\frac{3}{7}\)
a)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{91^2}}.1\)
=\(\frac{3+39}{7+91}\)
=\(\frac{42}{98}\)
=\(\frac{3}{7}\)
b)\(\sqrt{\left(2,5-0,7\right)^2}\)
=\(|2,5-0,7|\)
=2,5-0,7
=1,8
\(\left\{{}\begin{matrix}a=\dfrac{35}{49}=\dfrac{5}{7}\\b=\sqrt{\dfrac{5^2}{7^2}}=\dfrac{5}{7}\\c=\dfrac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\dfrac{5+35}{7+49}=\dfrac{5}{7}\\d=\dfrac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\dfrac{5-35}{7-49}=\dfrac{5}{7}\end{matrix}\right.\)
\(\Rightarrow a=b=c=d=\dfrac{5}{7}\)
\(a=\dfrac{35}{49};b=\dfrac{5}{7}\\ c,=\dfrac{5+35}{7+49}=\dfrac{12}{14}=\dfrac{6}{7}\\ d,=\dfrac{5-35}{7-49}\)
Áp dụng t/c dtsbn:
\(\dfrac{5}{7}=\dfrac{35}{49}=\dfrac{5+35}{7+49}=\dfrac{5-35}{7-49}\) hay \(a=b=c=d\)
a: Ta có: \(\dfrac{8}{\left(\sqrt{5}+\sqrt{3}\right)^2}-\dfrac{8}{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\dfrac{8}{8+2\sqrt{15}}-\dfrac{8}{8-2\sqrt{15}}\)
\(=\dfrac{64-16\sqrt{15}-64-16\sqrt{15}}{4}\)
\(=\dfrac{-32\sqrt{15}}{4}=-8\sqrt{15}\)
b: Ta có: \(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}\)
\(=\dfrac{4+3\sqrt{2}-4+3\sqrt{2}}{-2}\)
\(=-\dfrac{6\sqrt{2}}{2}=-3\sqrt{2}\)
b) \(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}=\dfrac{4+3\sqrt{2}-4+3\sqrt{2}}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}=\dfrac{6\sqrt{2}}{-2}=-3\sqrt{2}\)
c) \(\left(\dfrac{\sqrt{7}+3}{\sqrt{7}-3}-\dfrac{\sqrt{7}-3}{\sqrt{7}+3}\right):\sqrt{28}=\dfrac{\left(\sqrt{7}+3\right)^2-\left(\sqrt{7}-3\right)^2}{\left(\sqrt{7}-3\right)\left(\sqrt{7}+3\right)}:\sqrt{28}=\dfrac{16+6\sqrt{7}-16+6\sqrt{7}}{7-9}=\dfrac{12\sqrt{7}}{-2}=-6\sqrt{7}\)
Các số bằng \(\dfrac{3}{7}\) là a ; b ; c ; d