Tìm số tự nhiên x, biết:\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x\cdot\left(x+1\right):2}=\dfrac{2016}{2018}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+..........+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2014}{2016}\)
\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+.............+\dfrac{2}{x\left(x+1\right)}=\dfrac{2014}{2016}\)
\(\Leftrightarrow2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+.........+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2014}{2016}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2014}{2016}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2014}{2016}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1007}{2016}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2016}\)
\(\Leftrightarrow x+1=2016\)
\(\Leftrightarrow x=2015\left(tm\right)\)
Vậy ...........
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+.........+\dfrac{1}{x\left(x+1\right)}=\dfrac{2016}{2018}\)
\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...........+\dfrac{2}{x\left(x+1\right)}=\dfrac{2016}{2017}\)
\(\Leftrightarrow2\left(\dfrac{1}{6}+\dfrac{1}{12}+........+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2016}{2018}\)
\(\Leftrightarrow2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2016}{2018}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2016}{2018}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2016}{2018}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1008}{2018}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2018}\)
\(\Leftrightarrow x+1=2018\)
\(\Leftrightarrow x=2017\)
Vậy ...
\(a)\left(\dfrac{1}{2}+1,5\right)x=\dfrac{1}{5}\)
\(\Rightarrow2x=\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{1}{10}\)
\(b)\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=2\dfrac{1}{6}\)
\(\Leftrightarrow-\dfrac{8}{5}+x=\dfrac{13}{6}.\dfrac{12}{13}\)
\(\Leftrightarrow-\dfrac{8}{5}+x=2\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(c)\left(x:2\dfrac{1}{3}\right).\dfrac{1}{7}=-\dfrac{3}{8}\)
\(\Leftrightarrow x:\dfrac{7}{3}=-\dfrac{3}{8}:\dfrac{1}{7}\)
\(\Leftrightarrow x=-\dfrac{21}{8}.\dfrac{7}{3}\)
\(\Leftrightarrow x=-\dfrac{49}{8}\)
\(d)-\dfrac{4}{7}x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1\dfrac{2}{3}\right)\)
\(\Leftrightarrow-\dfrac{4}{7}x+\dfrac{7}{5}=-\dfrac{3}{40}\)
\(\Leftrightarrow-\dfrac{4}{7}x=-\dfrac{59}{40}\)
\(\Leftrightarrow x=\dfrac{413}{160}\)
1,
\(A=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2018}-1\right)\\ A=\left(-\dfrac{1}{2}\right)\cdot\left(-\dfrac{2}{3}\right)\cdot...\cdot\left(-\dfrac{2017}{2018}\right)\\ =-\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2017}{2018}\right)\\ =-\dfrac{1}{2018}\)
a)x=1;2;-2(bạn nên tự giải)
b)=>\(\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot30\cdot31}{4\cdot6\cdot8\cdot10\cdot...\cdot62\cdot64}\)=2x
=>\(\dfrac{2\cdot3\cdot4\cdot5\cdot...\cdot30\cdot31}{60\left(2\cdot3\cdot4\cdot5\cdot...\cdot30\cdot31\right)\cdot64}=2x\)
=>\(\dfrac{1}{60\cdot64}=2x\)=> 1/3840 =2x
=>x = 1/7680
c)=>4x - 2x = 6x - 3x
=>2x (2x-1)= 3x(2x-1)
=> 2x = 3x
=>x = 0
a: \(P=\left(\dfrac{3x+6}{2\left(x^2+4\right)}-\dfrac{2x^2-x-10}{\left(x+1\right)\left(x^2+1\right)}\right):\left(\dfrac{10\left(x^2-1\right)+3\left(x^2+1\right)\left(x-1\right)-6\left(x+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x+1\right)\left(x-1\right)\cdot2}\right)\cdot\dfrac{2}{x-1}\)
\(=\left(\dfrac{\left(3x+6\right)\left(x^3+x^2+x+1\right)-\left(2x^2+8\right)\left(2x^2-x-10\right)}{2\left(x^2+4\right)\left(x+1\right)\left(x^2+1\right)}\right)\cdot\dfrac{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)\cdot2}{-3x^3+x^2-3x-13}\cdot\dfrac{2}{x-1}\)
\(=\dfrac{-x^4+11x^3+13x^2+17x+16}{\left(x^2+4\right)}\cdot\dfrac{2}{-3x^3+x^2-3x-13}\)
\(\dfrac{1}{x+1}\)-\(\dfrac{5}{x-2}\)=\(\dfrac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\)\(\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}\)-\(\dfrac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\)=\(\dfrac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\)x-2-5(x+1)=15
\(\Leftrightarrow\) x-2-5x-5=15
\(\Leftrightarrow\)x-5x=15+2+5
\(\Leftrightarrow\)-4x=22
\(\Leftrightarrow\)x=-\(\dfrac{11}{2}\)
vậy
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x\cdot\left(x+1\right):2}=\dfrac{2016}{2018}\\ \dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\cdot\left(x+1\right)}=\dfrac{2016}{2018}\\ 2\cdot\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{x\cdot\left(x+1\right)}\right)=\dfrac{2016}{2018}\\ 2\cdot\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{x\cdot\left(x+1\right)}\right)=\dfrac{2016}{2018}\\ 2\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2016}{2018}:2\\ \dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1008}{2018}\\ \dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{1008}{2018}\\ \dfrac{1}{x+1}=\dfrac{1}{2018}\\ \Leftrightarrow x+1=2018\\ x=2018-1\\ x=2017\)