K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

@Hoang Hung Quan

26 tháng 8 2020

a) Ta có: \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+...\left|x+\frac{1}{110}\right|\ge0\left(\forall x\right)\)

=> \(11x\ge0\left(\forall x\right)\Rightarrow x\ge0\left(\forall x\right)\)

=> \(x+\frac{1}{2}+x+\frac{1}{6}+x+\frac{1}{12}+...+x+\frac{1}{110}=11x\)

<=> \(10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=11x\)

<=> \(x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)

<=> \(x=1-\frac{1}{11}\)

=> \(x=\frac{10}{11}\)

chọn 6 số bất kì chia thành 2 nhóm 3 số ,từ đó chọn được 2 số âm là a,c . Tổng 30 số còn lại là số âm b. Vậy S=a+b+c là số âm.

Tổng các số trên bảng :

1+2+...+2012+2013=1+2013/2.2013=2027091 là 1 số lẻ.

Mỗi lần xoá 2 số a,b (giả sử a>b) rồi viết vào giá trị tuyệt đối của 2 số(a-b)=a-b sẽ làm tổng các số còn lại trên bảng vẫn là số lẻ. Lặp lại cho đến khi trên bảng còn lại 1 số đó vẫn là số lẻ không thể  naò là số 0