Cho A= 102012 + 102011+ 102010 +102009 Chứng minh A không phải là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai trả lời được cho tớ bít nhé iu mọi người nhìu!
Chả lời đúng tui t i c k (Ghép các chữ ấy lại)
Sửa đề: Chứng mình chia hết 24
Tách: 24=8.3
⇒3 (1)
8 (Vì: 0088) (2)
Từ (1) và (2) ⇒A24 Vì: (3,8)
⇒đpcm
\(\dfrac{1}{10}A=\dfrac{10^{2012}+1}{10^{2012}+10}=1-\dfrac{9}{10^{2012}+10}\)
\(\dfrac{1}{10}B=\dfrac{10^{2011}+1}{10^{2011}+10}=1-\dfrac{9}{10^{2011}+10}\)
10^2012+10>10^2011+10
=>9/10^2012+10<9/10^2011+10
=>-9/10^2012+10>-9/10^2011+10
=>A>B
Vì a là số chia hết cho 5 => a có c/s tận cùng là 0 hoặc 5
+ Với a có c/s tận cùng là 0
=> a+2 có c/s tận cùng là 2
=> a+2 ko là số chính phương (Vì số chính phương có c/s tận cùng là 0;1;4;9 hoặc 6)
+ Với a có c/s tận cùng là 5
=>a+2 có c/s tận cùng là 7
=> a+2 ko là số chính phương (Vì số chính phương có c/s tận cùng là 0;1;4;9 hoặc 6)
Vậy cho a là 1 số chia hết cho 5 thì rằng a+2 không phải là số chính phương. Bài toán dc chứng minh
Gọi 5 STN liên tiếp là n−2;n−1;n;n+1;n+2
Ta có A=(n−2)2+(n−1)2+n2+(n+1)2+(n+2)2
=5n2+10=5(n2+2)
n2 không tận cùng là 3;8=>n2+2 không tận cùng là 5 hoặc 0=>n2+2 không chia hết cho 5
=>5(n2+2) không chia hết cho 25=> A không phải SCP
k mik nha!mấy bạn
:D
Giả sử √aa là số hữu tỉ .
Đặt √a=pqa=pq (p; q ∈∈ N; q khác 0 và (p;q) = 1)
=> a=p2q2a=p2q2 => a.q2 = p2
Vì p2 là số chính phương nên a.q2 viết được dưới dạng tích của các số với lũy thừa bằng 2
Mà p; q nguyên tố cùng nhau nên a viết được dưới dạng lũy thừa bằng 2 => a là số chính phương (trái với giả thiết)
=> Điều giả sử sai
Vậy √aa là số vô tỉ