K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

Đặt t=x2-2x+3(t\(\ge\)2)

PTTT: \(\dfrac{1}{t-1}+\dfrac{1}{t}=\dfrac{9}{2\left(t+1\right)}\)

<=>2t2+2t+2t2-2=9t2-9

<=>5t2-2t-7=0

<=>(t+1)(5t-7)=0

Do t\(\ge\)2

=>t+1>0 5t-7>0

Vậy pt vô nghiệm

9 tháng 5 2017

\(\dfrac{1}{x^2-2x+2}+\dfrac{1}{x^2-2x+3}=\dfrac{9}{2\left(x^2-2x+4\right)}\)

Đặt \(t=x^2-2x+2=\left(x-1\right)^2+1\ge1\)

Thì ta có:

\(PT\Leftrightarrow\dfrac{1}{t}+\dfrac{1}{t+1}=\dfrac{9}{2\left(t+2\right)}\)

\(\Leftrightarrow5t^2-t-4=0\)

\(\Leftrightarrow\left(5t^2-5t\right)+\left(4t-4\right)=0\)

\(\Leftrightarrow\left(t-1\right)\left(5t+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5t+4=0\\t-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{4}{5}\left(l\right)\\t=1\end{matrix}\right.\)

\(\Rightarrow x^2-2x+2=1\)

\(\Leftrightarrow x=1\)

Vậy PT có 1 nghiệm là x = 1

NV
21 tháng 4 2021

ĐKXĐ: \(x\ne\left\{2;4\right\}\)

Đặt \(\left\{{}\begin{matrix}\dfrac{x+1}{x-2}=a\\\dfrac{x-2}{x-4}=b\end{matrix}\right.\) \(\Rightarrow\dfrac{x+1}{x-4}=ab\)

Phương trình trở thành:

\(a^2-12b^2+ab=0\)

\(\Leftrightarrow a^2+4ab-3ab-12b^2=0\)

\(\Leftrightarrow a\left(a+4b\right)-3b\left(a+4b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(a+4b\right)=0\Leftrightarrow\left[{}\begin{matrix}a-3b=0\\a+4b=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x+1}{x-2}-\dfrac{3\left(x-2\right)}{x-4}=0\\\dfrac{x+1}{x-2}+\dfrac{4\left(x-2\right)}{x-4}=0\end{matrix}\right.\)

Bạn tự quy đồng và hoàn thành phần còn lại nhé

22 tháng 4 2021

e cảm ơn ạ

 

NV
24 tháng 4 2021

ĐKXĐ: ...

\(\left(\dfrac{x-1}{x+2}\right)^2-4\left(\dfrac{x+2}{x-3}\right)^2+3\left(\dfrac{x-1}{x-3}\right)=0\)

Đặt \(\left\{{}\begin{matrix}\dfrac{x-1}{x+2}=a\\\dfrac{x+2}{x-3}=b\end{matrix}\right.\)

\(\Rightarrow a^2-4b^2+3ab=0\Leftrightarrow\left(a-b\right)\left(a+4b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\a+4b=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x-1}{x+2}-\dfrac{x+2}{x-3}=0\\\dfrac{x-1}{x+2}+\dfrac{4x+8}{x-3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x-3\right)-\left(x+2\right)^2=0\\\left(x-\right)\left(x-3\right)+4\left(x+2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

7 tháng 2 2021

mình lười nên nói cách làm nhé

B1: chuyển \(\dfrac{6}{x^2-9}\)sang vế trái và thêm dấu trừ ở trc \(\dfrac{6}{x^2-9}\)và vế phải =0

B2: để ý thấy \(x^2-9\)=(x-3).(x+3) tức là hằng đẳng thức số 3 ý

B3: quy đồng mẫu , mẫu số chung là (x-3).(x+3).(2x+7)

B4: chia cả hai vế cho (x-3).(x+3).(2x+7)

lưu ý : bước này là dấu⇒ chứ ko phải dấu ⇔ nhé

B5: giải pt như bình thg thui

hihi

ĐKXĐ: \(x\notin\left\{3;-3;-\dfrac{7}{2}\right\}\)

Ta có: \(\dfrac{13}{\left(x-3\right)\left(2x+7\right)}+\dfrac{1}{2x+7}=\dfrac{6}{x^2-9}\)

\(\Leftrightarrow\dfrac{13\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}+\dfrac{x^2-9}{\left(2x+7\right)\left(x-3\right)\left(x+3\right)}=\dfrac{6\left(2x+7\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}\)

Suy ra: \(13x+39+x^2-9=12x+42\)

\(\Leftrightarrow x^2+13x+30-12x-42=0\)

\(\Leftrightarrow x^2+x-12=0\)

\(\Leftrightarrow x^2+4x-3x-12=0\)

\(\Leftrightarrow x\left(x+4\right)-3\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)

Vậy: S={-4}

1: \(\Leftrightarrow x^2+6x+9-6x+3>x^2-4x\)

=>-4x<12

hay x>-3

2: \(\Leftrightarrow6+2x+2>2x-1-12\)

=>8>-13(đúng)

4: \(\dfrac{2x+1}{x-3}\le2\)

\(\Leftrightarrow\dfrac{2x+1-2x+6}{x-3}< =0\)

=>x-3<0

hay x<3

6: =>(x+4)(x-1)<=0

=>-4<=x<=1

20 tháng 1 2021

\(a,\dfrac{3}{2x-1}+1=\dfrac{2x-1}{2x+1};ĐKXĐ:x\ne\pm\dfrac{1}{2}\\ \Leftrightarrow\dfrac{3}{2x-1}-\dfrac{2x-1}{2x+1}+1=0\\ \Leftrightarrow\dfrac{3\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}-\dfrac{\left(2x-1\right)\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}+\dfrac{\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}=0\\ \Rightarrow3\left(2x+1\right)-\left(2x-1\right)^2+\left(2x-1\right)\left(2x+1\right)=0\\ \Leftrightarrow6x+3-\left(4x^2-4x+1\right)+\left(4x^2-1\right)=0\\ \Leftrightarrow6x+3-4x^2+4x-1+4x^2-1=0\\ \Leftrightarrow10x+1=0\\ \Leftrightarrow10x=-1\\ \Leftrightarrow x=-\dfrac{1}{10}\)

Vậy \(x\in\left\{-\dfrac{1}{10}\right\}\)

5 tháng 10 2021

\(ĐK:-1\le x\le1\\ PT\Leftrightarrow13\left(1-2x^2\right)\sqrt{\left(1-x^2\right)\left(1+x^2\right)}+9\left(1+2x^2\right)\sqrt{\left(1+x^2\right)\left(1-x^2\right)}=0\\ \Leftrightarrow\sqrt{1-x^4}\left(13-26x^2+9+18x^2\right)=0\\ \Leftrightarrow\sqrt{1-x^4}\left(22-8x^2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}1-x^4=0\\22-8x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(1+x^2\right)\left(1-x\right)\left(1+x\right)=0\\x^2=\dfrac{22}{8}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{\sqrt{11}}{2}\left(ktm\right)\\x=-\dfrac{\sqrt{11}}{2}\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)