K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

Điểm A ở đâu vậy bạn?

1 tháng 2 2022

a) Tứ giác ACDE là hình vuông (gt).

\(\Rightarrow\) \(\widehat{DAE}=\widehat{DAC}\) (Tính chất hình vuông).

Xét tứ giác AMCB:

\(A;M;C;B\in\left(O\right)\left(gt\right).\)

\(\Rightarrow\) Tứ giác AMCB nội tiếp (O).

\(\Rightarrow\) \(\left\{{}\begin{matrix}\widehat{MCB}=\widehat{DAE}.\\\widehat{MBC}=\widehat{DAC}.\end{matrix}\right.\)

Mà \(\widehat{DAE}=\widehat{DAC}\left(cmt\right).\)

\(\Rightarrow\widehat{DAE}=\widehat{DAC}=\widehat{MCB}=\widehat{MBC}.\)

Xét (O):

\(M\in\left(O\right)\left(gt\right).\)

BC là đường kính (gt).

\(\Rightarrow\widehat{BMC}=90^o\) (Góc nội tiếp chắn nửa đường tròn).

Xét \(\Delta BMC:\)

\(\widehat{MCB}=\widehat{MBC}\left(cmt\right).\)

\(\Rightarrow\text{​​}\Delta BMC\) cân tại M.

Mà \(\widehat{BMC}=90^o\left(cmt\right).\)

\(\Rightarrow\text{​​}\Delta BMC\) vuông cân tại M.

b) Tứ giác ACDE là hình vuông (gt).

\(\Rightarrow\) \(\widehat{AED}=\widehat{EDC}=\widehat{DCA}=\widehat{CAE}=90^o\) (Tính chất hình vuông).

Xét tứ giác FDCM:

\(\widehat{FMC}+\widehat{FDC}=90^o+90^o=180^o.\)

Mà 2 góc ở vị trí đối nhau.

\(\Rightarrow\) Tứ giác FDCM nội tiếp đường tròn.

\(\Rightarrow\widehat{FCM}=\widehat{FDM}.\)

Mà \(\widehat{FDM}+\widehat{EAD}=90^o\) (2 góc phụ nhau).

\(\Rightarrow\widehat{FCM}+\widehat{EAD}=90^o.\)

Lại có \(\widehat{EAD}=\widehat{MCB}\left(cmt\right).\)

\(\Rightarrow\widehat{FCM}+\widehat{MCB}=90^o.\\ \Rightarrow\widehat{FCB}=90^o.\)

Xét tứ giác BEFC:

\(\widehat{FCB}+\widehat{FEB}=90^o+90^o=180^o.\)

Mà 2 góc ở vị trí đối nhau.

\(\Rightarrow\) Tứ giác BEFC nội tiếp đường tròn.

c) Xét (O): 

BC là đường kính (gt).

\(FC\perp BC\left(\widehat{FCB}=90^o\right).\)

\(\Rightarrow\) FC là là tiếp tuyền của đường tròn (O).

19 tháng 4 2023

a) Ta có : \(\hat{A}=90^o\) (góc nội tiếp chắn nửa đường tròn (O), đường kính BC).

\(\hat{E}=90^o\) (góc nội tiếp chắn nửa đường tròn (I), đường kính AH).

\(\hat{F}=90^o\) (góc nội tiếp chắn nửa đường tròn (I), đường kính AH).

Suy ra, AHEF là hình chữ nhật (dấu hiệu nhận biết) (điều phải chứng minh).

b) Ta có : \(\hat{HAC}+\hat{C}=90^o\) (hai góc phụ nhau) và \(\hat{ABC}+\hat{C}=90^o\) (hai góc phụ nhau)

\(\Rightarrow\hat{HAC}=\hat{ABC}\) (điều phải chứng minh).

Mặt khác : \(\hat{AEF}=\hat{AHF}\) (hai góc nội tiếp đường tròn (I) cùng chắn cung AF).

Và : \(\left\{{}\begin{matrix}\hat{AHF}+\hat{HAC}=90^o\\\hat{C}+\hat{HAC}=90^o\end{matrix}\right.\Rightarrow\hat{AHF}=\hat{C}\). Suy ra : \(\hat{AEF}=\hat{C}\).

Lại có : \(\hat{AEF}+\hat{BEF}=180^o\) (hai góc kề bù) \(\Rightarrow\hat{C}+\hat{BEF}=180^o\).

Mà trong tứ giác BEFC, hai góc trên lại đối nhau. Do đó, tứ giác BEFC nội tiếp được một đường tròn (điều phải chứng minh).

21 tháng 3 2017

10 NHA KID LUÔN LUÔN GIÚP BẠN

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

b: Xét ΔBMC có BM=BC

nên ΔBMC cân tại B

mà \(\widehat{MBC}=60^0\)

nên ΔBMC đều

c: Xét ΔOBM và ΔOCM có 

OB=OC

OM chung

BM=CM

Do đó: ΔOBM=ΔOCM

Suy ra: \(\widehat{OBM}=\widehat{OCM}=90^0\)

hay MC là tiếp tuyến của (O)

a: góc ACO=1/2*sđ cung AO=90 độ

=>OC//BD

Xét ΔADB có

O là trung điểm của AB

OC//BD

=>C là trung điểm của AD

b: BC là tiếp tuyến của (O')

=>góc BCO'=90 độ

=>góc O'CA=góc OCB

=>góc CO'O=góc O'CO=góc O'OC

=>ΔOO'C đều

=>C thuộc (O') sao cho ΔOCO' đều

=>Dựng đường trung trực của OO' cắt (O') tại C, ta đc điểm C cần tìm

a: góc ACO=1/2*sđ cung AO=90 độ

=>OC//BD

Xét ΔADB có

O là trung điểm của AB

OC//BD

=>C là trung điểm của AD

b: BC là tiếp tuyến của (O')

=>góc BCO'=90 độ

=>góc O'CA=góc OCB

=>góc CO'O=góc O'CO=góc O'OC

=>ΔOO'C đều

=>C thuộc (O') sao cho ΔOCO' đều

=>Dựng đường trung trực của OO' cắt (O') tại C, ta đc điểm C cần tìm

19 tháng 3 2016

thầy cho mik gợi ý nhg ko bt làm

từ M kẻ tiếp tuyến MI

kẻ tt Bt

nối AI CI EI 

bn nào bt lm hộ nha

19 tháng 3 2016

.Dường thẳng BC cắt OM tại E và F, sao BC cắt OM tại 2 điểm đc hả bạn

a: Điểm M ở đâu vậy bạn?

b: góc ONP=góc ONB+góc PNB

góc ANB=1/2*sđ cung AB=90 độ

=>BN vuông góc AK

=>BN//KC

=>góc ABN=góc ACK

=>góc ONB=góc ACK

Xét ΔKBC có

KP vừa là đường cao, vừa là trung tuyến

=>ΔKBC cân tại K

=>góc BKP=góc CKP

góc ONP=góc ONB+góc BNP

=góc ONB+góc BKP

=góc ONB+góc CKP

=góc OBN+góc NAB=90 độ

=>NP là tiếp tuyến của (O)

29 tháng 7 2023

bạn sửa câu a) MP thành PK nhé

b: góc ONP=góc ONB+góc PNB

góc ANB=1/2*sđ cung AB=90 độ

=>BN vuông góc AK

=>BN//KC

=>góc ABN=góc ACK

=>góc ONB=góc ACK

Xét ΔKBC có

KP vừa là đường cao, vừa là trung tuyến

=>ΔKBC cân tại K

=>góc BKP=góc CKP

góc ONP=góc ONB+góc BNP

=góc ONB+góc BKP

=góc ONB+góc CKP

=góc OBN+góc NAB=90 độ

=>NP là tiếp tuyến của (O)

a: KNBP nội tiếp

=>góc PNK=góc PBK; góc PKN=180 độ-góc NBP

=>góc PNK=góc PCK

=>góc PNK=góc AKP

180 độ-góc NBP=góc ABN

=>180 độ-góc NBP=góc AKP

=>góc PNK=góc PKN

=>PK=PN