Hai dây cung AB và CD kéo dài cắt nhau tại điểm E ở ngoài đường tròn (O) (B nằm giữa A và E, C nằm giữa D và E). Cho biết \(\widehat{CBE}=75^0,\widehat{CEB}=22^0,\widehat{AOD}=144^0\)
Chứng minh :
\(\widehat{AOB}=\widehat{BAC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) dễ thấy A,O,B,C cùng thuộc đường tròn đường kính OC
suy ra A,C,B,O,D thuộc đường tròn đường kính OC
Ta có : \(\widehat{BED}=\widehat{ECB}+\widehat{EBC}=\widehat{BAD}+\widehat{EAB}=\widehat{DAE}\)
b) vì AC = AB nên \(\widebat{AB}=\widebat{AC}\Rightarrow\widehat{ADE}=\widehat{EDB}\)
Xét \(\Delta ADE\)và \(\Delta EDB\)có :
\(\widehat{ADE}=\widehat{EDB}\); \(\widehat{DAE}=\widehat{BED}\)
\(\Rightarrow\Delta ADE~\Delta EDB\left(g.g\right)\Rightarrow\frac{AD}{DE}=\frac{ED}{BD}\Rightarrow DE^2=AD.BD\)
Có thể giải gúp tôi được không /
Con mua 17 kg cam , mẹ mua gấp 3 lần số cam của con . Hỏi cả hai mẹ con mua được bao nhiêu kg cam ?
a: Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
Xét tứ giác BEFI có \(\widehat{BEF}+\widehat{BIF}=90^0+90^0=180^0\)
nên BEFI là tứ giác nội tiếp
b: Xét ΔAIF vuông tại I và ΔAEB vuông tại E có
\(\widehat{EAB}\) chung
Do đó: ΔAIF~ΔAEB
=>\(\dfrac{AI}{AE}=\dfrac{AF}{AB}\)
=>\(AI\cdot AB=AF\cdot AE\)