K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

\(T=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)

\(=\dfrac{3}{2}.\dfrac{4}{3}...\dfrac{99}{98}.\dfrac{100}{99}\)

\(=\dfrac{100}{2}=50\)

Vậy T = 50

8 tháng 5 2017

\(T=\left(\dfrac{1}{2}+1\right)\cdot\left(\dfrac{1}{3}+1\right)\cdot\left(\dfrac{1}{4}+1\right)\cdot...\cdot\left(\dfrac{1}{98}+1\right)\cdot\left(\dfrac{1}{99}+1\right)\)

\(=\left(\dfrac{1}{2}+\dfrac{2}{2}\right)\cdot\left(\dfrac{1}{3}+\dfrac{3}{3}\right)\cdot\left(\dfrac{1}{4}+\dfrac{4}{4}\right)\cdot...\cdot\left(\dfrac{1}{98}+\dfrac{98}{98}\right)\cdot\left(\dfrac{1}{99}+\dfrac{99}{99}\right)\)

\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{99}{98}\cdot\dfrac{100}{99}\)

\(=\dfrac{3\cdot4\cdot5\cdot...\cdot99\cdot100}{2\cdot3\cdot4\cdot...\cdot98\cdot99}\)

\(=\dfrac{100}{2}=50\).

27 tháng 6 2017

\(T=\left(\dfrac{1}{2}+1\right).\left(\dfrac{1}{3}+1\right).\left(\dfrac{1}{4}+1\right).......\left(\dfrac{1}{98}+1\right).\left(\dfrac{1}{99}+1\right) \) \(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}....\dfrac{99}{98}\cdot\dfrac{100}{99}\)

\(=\dfrac{100}{2}=50\)

27 tháng 6 2017

\(T=\left|\dfrac{1}{2}+1\right|\left|\dfrac{1}{3}+1\right|\left|\dfrac{1}{4}+1\right|.....\left|\dfrac{1}{98}+1\right|\left|\dfrac{1}{99}+1\right|\)

\(T=\left|\dfrac{3}{2}\right|.\left|\dfrac{4}{3}\right|.\left|\dfrac{5}{4}\right|......\left|\dfrac{99}{98}\right|.\left|\dfrac{100}{99}\right|\)

\(T=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}.....\dfrac{99}{98}.\dfrac{100}{99}\)

\(T=\dfrac{3.4.5.....99.100}{2.3.4.....98.99}=\dfrac{100}{2}=50\)

6 tháng 3 2017

\(D=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)....\left(1-\dfrac{1}{2015}\right)\)

\(D=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2014}{2015}=\dfrac{1.2.3....2014}{2.3.4....2015}\)

\(D=\dfrac{1}{2015}\)

6 tháng 3 2017

\(D=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{2015}\right)\)

\(D=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2014}{2015}=\dfrac{1.2.3...2014}{2.3.4...2015}\)

\(D=\dfrac{1}{2015}\)

20 tháng 7 2018

A = \(\left(-2\right).\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{214}\right)\)

= \(\left(-2\right).\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{215}{214}\right)\)

= \(\dfrac{\left(-2\right).\left(-3\right).\left(-4\right).\left(-5\right)...\left(-215\right)}{1.2.3.4...214}\)

= \(\dfrac{2.3.4.5...215}{1.2.3.4...214}\)

= \(\dfrac{215}{1}=215\)

20 tháng 7 2018

B = \(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)....\left(-1\dfrac{1}{299}\right)\)

= \(\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{300}{299}\right)\)

= \(\dfrac{\left(-3\right).\left(-4\right).\left(-5\right)...\left(-300\right)}{2.3.4...299}\)

= \(\dfrac{3.4.5...300}{2.3.4.5...299}\)

= \(\dfrac{300}{2}=150\)

14 tháng 5 2017

\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right).........................\left(\dfrac{1}{99}-1\right)\left(\dfrac{1}{100}-1\right)\)

\(A=\left(\dfrac{1}{2}-\dfrac{2}{2}\right)\left(\dfrac{1}{3}-\dfrac{3}{3}\right)\left(\dfrac{1}{4}-\dfrac{4}{4}\right)................\left(\dfrac{1}{99}-\dfrac{99}{99}\right)\left(\dfrac{1}{100}-\dfrac{100}{100}\right)\)

\(A=\left(\dfrac{-1}{2}\right)\left(\dfrac{-2}{3}\right)\left(\dfrac{-3}{4}\right)...................\left(\dfrac{-98}{99}\right)\left(\dfrac{-99}{100}\right)\)

\(A=\dfrac{\left(-1\right)\left(-2\right)\left(-3\right).........................\left(-98\right)\left(-99\right)}{2.3.4....................98.99.100}\)

\(A=\dfrac{-1}{100}\)

14 tháng 5 2017

Ta có

A = \(\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{99}-1\right).\left(\dfrac{1}{100}-1\right)\)(99 thừa số)

A = \(\dfrac{-1}{2}.\dfrac{-2}{3}.\dfrac{-3}{4}....\dfrac{-98}{99}.\dfrac{-99}{100}\)

A = \(\dfrac{\left(-1\right).\left(-2\right).\left(-3\right)....\left(-98\right).\left(-99\right).\left(-100\right)}{2.3.4....98.99.100}\)

A = \(\dfrac{\left(-1\right).\left(-1\right).\left(-1\right)....\left(-1\right)}{1.1.1...1.1.1}\) (100 số -1, 99 số 1)

A = \(\dfrac{-1}{1.1.1.1...1.1.1}\)

A = \(\dfrac{-1}{1}\)

A = -1

Vậy A = -1

4 tháng 10 2021

\(N=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{100}\)

\(\Rightarrow2N=2+1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}\)

\(\Rightarrow N=2N-N=2+1+\dfrac{1}{2}+...+\left(\dfrac{1}{2}\right)^{99}-1-\dfrac{1}{2}-...-\left(\dfrac{1}{2}\right)^{100}=2-\left(\dfrac{1}{2}\right)^{100}\)

4 tháng 10 2021

\(N=1+\left(\dfrac{1}{2}\right)+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{100}\)

\(\dfrac{1}{2}N=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{101}\)

\(\dfrac{1}{2}N-N=\left(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{101}\right)\)

               \(-\left(1+\left(\dfrac{1}{2}\right)+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{100}\right)\)

\(-\dfrac{1}{2}N=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^{101}-1\)

\(N=\dfrac{-\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^{101}}{-\dfrac{1}{2}}\)

25 tháng 5 2017

\(A=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{99}+1\right)\)

\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{100}{99}=\dfrac{100}{2}=50\)

Vậy A = 50

25 tháng 5 2017

Ta có:

A=\(^{\left(\dfrac{1}{2}+1\right).\left(\dfrac{1}{3}+1\right).\left(\dfrac{1}{4}+1\right).....\left(\dfrac{1}{99}\right)+1}\)

A= \(\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}.....\dfrac{1}{99}+1\)

A=\(\dfrac{1}{2}+1\)

A=\(\dfrac{3}{2}\)

a, \(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{4}\right)\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right)\)

\(=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{4}\right)\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right).2\)

\(=\left(1-\dfrac{1}{4}\right)\left(1+\dfrac{1}{4}\right)\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right).2\)

\(=\left(1-\dfrac{1}{16}\right)\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right).2\)

...

\(=\left(1-\dfrac{1}{2^{2n}}\right)\left(1+\dfrac{1}{2^{2n}}\right).2=\left(1-\dfrac{1}{2^{4n}}\right).2=2-\dfrac{1}{2^{4n-1}}\)

Vậy ...

b,Sửa đề: \(\left(10+1\right).\left(10^2+1\right).\left(10^4+1\right)...\left(10^{2n}+1\right)\)

Ta có:\(\left(10+1\right).\left(10^2+1\right).\left(10^4+1\right)...\left(10^{2n}+1\right)\)

\(=\left(10-1\right).\left(10+1\right).\left(10^2+1\right).\left(10^4+1\right)...\left(10^{2n}+1\right).\dfrac{1}{9}\)

\(=\left(10^2-1\right).\left(10^2+1\right).\left(10^4+1\right)...\left(10^{2n}+1\right).\dfrac{1}{9}\)

\(=\left(10^4-1\right).\left(10^4+1\right)...\left(10^{2n}+1\right).\dfrac{1}{9}\)

...

\(=\left(10^{2n}-1\right)\left(10^{2n}+1\right).\dfrac{1}{9}=\left(10^{4n}-1\right).\dfrac{1}{9}=\dfrac{10^{4n}}{9}-\dfrac{1}{9}\)

Vậy ...

áp dụng hằng đẳng thức (a+b)(a-b)=a^2-b^2 Minh Hoang Hai