K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

A B C M F E

a)Xét tam giác ABC và tam giác MBA có:

góc BAC = góc BMA(=90o do AM là đường cao và tam giác ABC vuông)

Góc ABC chung

=>\(\Delta ABC\infty\Delta MBA\)(g.g)(1)

b)Xét tam giác ABC và tam giác MAC có:

Góc ACB chung

góc BAC = góc AMC(=900)

=>\(\Delta ABC\infty\Delta MAC\)(g.g)(2)

Từ 1 và 2 =>\(\Delta MBA\infty\Delta MAC\) hay \(\Delta AMB\infty\Delta CMA\)

c)\(\Delta AMB\infty\Delta CMA\)=>\(\dfrac{AM}{CM}=\dfrac{BM}{AM}\)

=>AM2=BM.CM

Mà BM+CM=BC,BC=15cm BM=6cm=>CM=9cm

=>AM2=6.9=54

=>AM=\(3\sqrt{6}\)(cm)

Áp dụng định lí pytago cho tam giác AMB ta có:

AB2=AM2+BM2=54+62=90

=>AB=\(3\sqrt{10}\)(cm)

d)SAFC=1/2 SABC(chung đường cao từ A đáy FC=1/2 BC do F nằm trên trung trực BC và F thuộc BC)

Ta có:FB=FB=\(\dfrac{BC}{2}=7,5\left(cm\right)\)

AM//FE do cùng vuông góc với BC

=>\(\dfrac{CF}{CM}=\dfrac{CE}{CA}\)

=>\(\dfrac{CE}{CA}=\dfrac{7,5}{9}=\dfrac{5}{6}\)

=>SEFC=\(\dfrac{5}{6}\)SAFC(chung đường cao từ F và EC=\(\dfrac{5}{6}CA\))

=>SEFC=(\(\dfrac{5}{6}\cdot\dfrac{1}{2}\))SABC=\(\dfrac{5}{12}\)SABC

16 tháng 4 2021

a/ Xét \(\Delta ABC\) và \(\Delta HAC\) có :

\(\left\{{}\begin{matrix}\widehat{C}chung\\\widehat{BAC}=\widehat{AHC}=90^0\end{matrix}\right.\)

\(\Leftrightarrow\Delta ABC\sim HAC\left(g-g\right)\)

b/ \(BC=\sqrt{AB^2+AC^2}=10cm\)

\(AH.BC=AB.AC\Leftrightarrow AH=\dfrac{AB.AC}{BC}=4,8cm\)

c/ \(\Delta HEA\sim\Delta CEH\left(g-g\right)\)

\(\Leftrightarrow\dfrac{HE}{CE}=\dfrac{EA}{HE}\Leftrightarrow HE^2=EA.EC\left(đpcm\right)\)

 

16 tháng 4 2021

a) Xét ΔHAC và ΔABC có:

∠(ACH ) là góc chung

∠(BAC)= ∠(AHC) = 90o

⇒ ΔHAC ∼ ΔABC (g.g)

b) Xét ΔHAD và ΔBAH có:

∠(DAH ) là góc chung

∠(ADH) = ∠(AHB) = 90o

⇒ ΔHAD ∼ ΔBAH (g.g)

c) Tứ giác ADHE có 3 góc vuông ⇒ ADHE là hình chữ nhật.

⇒ ΔADH= ΔAEH ( c.c.c) ⇒ ∠(DHA)= ∠(DEA)

Mặt khác: ΔHAD ∼ ΔBAH ⇒ ∠(DHA)= ∠(BAH)

∠(DEA)= ∠(BAH)

Xét ΔEAD và ΔBAC có:

∠(DEA)= ∠(BAH)

∠(DAE ) là góc chung

ΔEAD ∼ ΔBAC (g.g)

d) ΔEAD ∼ ΔBAC

ΔABC vuông tại A, theo định lí Pytago:

Theo b, ta có:

 

 

 

 

 

 

 

 

 

12 tháng 3 2018

A B C F E D H 1 2 Ta thấy

\(\widehat{B}+\widehat{C}=90^0\)

\(\widehat{B}+\widehat{D}=90^o\)

=> \(\widehat{D}=\widehat{C}\)

Xét ΔFEC và ΔFBD có

\(\widehat{F}1=\widehat{F2}=90^o\)

\(\widehat{C}=\widehat{D}\) (cmt)

=> ΔFEC ∼ ΔFBD (đpcm)

b) Xét ΔAED và ΔHAC có

\(\widehat{DAE}=\widehat{AHC}=90^o\)

\(\widehat{D}=\widehat{C}\) (cmt)

=> ΔAED ∼ΔHAC (đpcm)

a: \(\text{Δ}ABC\sim\text{Δ}HBA;\text{Δ}ABC\sim\text{Δ}HCA\)

b: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)

CH=BC-BH=25-9=16(cm)

2 tháng 7 2021

a. Xét ΔABC và ΔHBA

. BAC=BHA(=90)

. ABH chung

⇒ ΔABC~ΔHBA (g.g)