K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

Có:

\(A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{81}+\dfrac{1}{100}\)

\(A=\dfrac{1}{4}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}+\dfrac{1}{10^2}\)

Mà: \(\dfrac{1}{3^2}>\dfrac{1}{3.4}\)

\(\dfrac{1}{4^2}>\dfrac{1}{4.5}\)

...

\(\dfrac{1}{9^2}>\dfrac{1}{9.10}\)

\(\dfrac{1}{10^2}>\dfrac{1}{10.11}\)

\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}+\dfrac{1}{10.11}\)

\(A>\dfrac{1}{4}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}+\dfrac{1}{10.11}\)

\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3}-0-0-...-0-\dfrac{1}{11}\)

\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{11}\)

\(\Rightarrow A>\dfrac{65}{132}\)

Chúc bạn học tốt!ok

6 tháng 5 2018

Câu hỏi của gam vu - Toán lớp 6 | Học trực tuyến

11 tháng 4 2018

Cho A = 1/2 .3/4.5/6.....199/200.Chứng tỏ rằng B mũ 2 <1/201.Bạn có làm dược ko ?

20 tháng 10 2019

\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{100}\)

\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}=\frac{9}{10}\)

\(A< \frac{9}{10}\Rightarrow A< 1\left(đpcm\right)\)

20 tháng 10 2019

Viết hơi rắc rối,  ko hiểu=ib.

Ta có:

A=1/4+1/9+1/16+...+1/100

=>A=1/22+1/32+1/42+...+1/102

=>A<1/(1.2)+1/(2.3)+1/(3.4)+...+1/(9.10)         =1-1/2+1/2-1/3+...+1/9-1/10

         =1-1/10=9/10<1

=>A<1(đpcm)

`A = 3/4 xx 8/9 xx ... xx 99/100`

`= (1xx3)/(2xx2) xx (2xx4)/(3xx3) xx ... xx (9xx11)/(10xx10)`

`= (1xx2xx3xx ... xx 9)/(2xx3xx...xx10) xx (3xx4xx5xx...xx 11)/(2xx3xx4xx...xx 10)`

`= 1/10 xx 11`

`= 11/10`.

Ta có: `11/10 > 1`

`11/19 < 1`.

`=> A > 11/19`.

25 tháng 4 2023

b\()\)

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 3/4

25 tháng 4 2023

Tương tự như vậy với câu a\()\)

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 1/2

3 tháng 6 2018

Ta có : \(\dfrac{1}{4}\)= \(\dfrac{1}{2.2}\)> \(\dfrac{1}{2.3}\)

\(\dfrac{1}{9}\)= \(\dfrac{1}{3.3}\)> \(\dfrac{1}{3.4}\)

\(\dfrac{1}{16}\)=\(\dfrac{1}{4.4}\)> \(\dfrac{1}{4.5}\)

.......

\(\dfrac{1}{9801}\)= \(\dfrac{1}{99.99}\)> \(\dfrac{1}{99.100}\)

\(\dfrac{1}{10000}\)= \(\dfrac{1}{100.100}\)> \(\dfrac{1}{100.101}\)

\(\Rightarrow\) \(\dfrac{1}{4}\)+ \(\dfrac{1}{9}\)+ \(\dfrac{1}{16}\)+ ..... + \(\dfrac{1}{9801}\)+ \(\dfrac{1}{10000}\)> \(\dfrac{1}{2.3}\)+ \(\dfrac{1}{3.4}\)+ \(\dfrac{1}{4.5}\)+...+ \(\dfrac{1}{99.100}\)+\(\dfrac{1}{100.101}\)

= \(\dfrac{3-2}{2.3}\)+ \(\dfrac{4-3}{3.4}\)+ \(\dfrac{5-4}{4.5}\) +...+ \(\dfrac{100-99}{99.100}\)+ \(\dfrac{101-100}{100.101}\)

= \(\dfrac{3}{2.3}\)- \(\dfrac{2}{2.3}\) + \(\dfrac{4}{3.4}\)-\(\dfrac{3}{3.4}\)+ \(\dfrac{5}{4.5}\)-\(\dfrac{4}{4.5}\)+...+ \(\dfrac{100}{99.100}\)- \(\dfrac{99}{99.100}\)+ \(\dfrac{101}{100.101}\)-\(\dfrac{100}{100.101}\)

= \(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+....+ \(\dfrac{1}{99}\)-\(\dfrac{1}{100}\)+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\)

= \(\dfrac{1}{2}\)- \(\dfrac{1}{101}\) ; Mà \(\dfrac{1}{2}\)- \(\dfrac{1}{101}\)= \(\dfrac{99}{202}\)< \(\dfrac{1}{2}\)

\(\Rightarrow\) \(\dfrac{1}{2}\)< \(\dfrac{1}{4}\)+ \(\dfrac{1}{9}\)+ \(\dfrac{1}{16}\)+...+ \(\dfrac{1}{9801}\)+ \(\dfrac{1}{10000}\) (1)

3 tháng 6 2018

b ơi , b có khả năng được gp đấy