Hãy viết 7 hằng đẳng thức ko đáng nhớ
⁰๖ۣۜHãƴ☿V͛๖ۣۜIếʇ☿7☿H҉ằทĞ☿đẳŃɠ☿ⓣH͙ứⒸ☿ⓚO͟☿đáղG꙰☿ղɦớ☝
#raduongnhodeokhautrang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Một đơn phân của ADN gồm axit photphoric, đường deoxiribozo, 1 bazo nito.
3.Lai phân tích là phép lai giữa cá thể mang tính trạng trội cần xác định kiểu gen với cá thể mang tính trạng lặn.
5.Tạo ra 4 tế bào con có NST=\(\dfrac{1}{2}\)NST của tế bào mẹ.
1 . Đơn phân AGN gồm ?
- Gồm : Axit phôtphoric, đường Đêôxiribô, 1 bazơnitric.
2. Mỗi loài NST có đặc chưng bởi cái gì ?
- Đặc trưng bởi số lượng, hình dạng, cấu trúc.
5. Kết quả của giảm phân II là gì ?
- Từ 1 tế bào mẹ (2n) ---> 4 tế bào con có bộ NST đơn bội ( số NST giảm đi 1 nửa so với tế bào mẹ )
6. Các cơ thể dị hợp có kiểu gen ntn ?
- Có các kiểu gen tương ứng khác nhau
7. Cấu trúc không gian của phân tử ADN ?
- ADN là một chuỗi xoắn kép gồm 2 mạch đơn song song, xoắn đều phải. Các nuclêôtit giữa 2 mạch đơn liên kết với nhau thành từng cặp theo NTBS: A liên kết với T; G liên kết với X.
bạn ấn vào vido để tạo thư mục video sau đó bạn lại đặt tên tiêu đề và nó sẽ tự xuất hiện "Nhập url youtube". Bạn vào youtube rồi tìm video muốn đăng, bn ấn vào video đó rồi copy link ở trên
Các hàng đẳng thức lớp 7 đc học là ;
\(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(a^2-b^2=\left(a+b\right).\left(a-b\right)\)
Vì câu hỏi ghi toán 7 nên chỉ có thế thôi chưa học đâu
7 hằng đẳng thức đáng nhớ là :
\(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(a^2-b^2=\left(a+b\right)\left(a-b\right)\)
\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
~ Hok tốt ~
CHUYÊN ĐỀ: NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ
- Bình phương của một tổng bằng bình phương số thứ nhất cộng với hai lần tích số thứ nhân nhân số thứ hai rồi cộng với bình phương số thứ hai. (A + B)2 = A2 + 2AB + B2 |
Ví dụ:
- Bình phường của một hiệu bằng bình phương số thứ nhất trừ đi hai lần tích số thứ nhất nhân số thứ 2 rồi cộng với bình phương số thứ hai. (A - B)2 = A2 - 2AB + B2 |
Ví dụ:
- Hiệu hai bình phương bằng hiệu hai số đó nhân tổng hai số đó. A2 – B2 = (A + B)(A – B) |
Ví dụ:
- Lập phương của một tổng = lập phương số thứ nhất + 3 lần tích bình phương số thứ nhất nhân số thứ hai + 3 lần tích số thứ nhất nhân bình phương số thứ hai + lập phương số thứ hai. (A + B)3 = A3 + 3A2B + 3AB2 + B3 |
Vú dụ:
- Lập phương của một hiệu = lập phương số thứ nhất - 3 lần tích bình phương số thứ nhất nhân số thứ hai + 3 lần tích số thứ nhất nhân bình phương số thứ hai - lập phương số thứ hai. (A - B)3 = A3 - 3A2B + 3AB2 - B3 |
Ví dụ:
- Tổng của hai lập phương bằng tổng hai số đó nhân với bình phương thiếu của hiệu. A3 + B3 = (A + B)(A2 – AB + B2) |
Ví dụ:
- Hiệu của hai lập phương bằng hiệu của hai số đó nhân với bình phương thiếu của tổng. A3 – B3 = (A – B)(A2 + AB + B2) |
1. ( A + B ) = A^2 + 2.A.B + B^2
2. ( A - B ) = A^2 - 2.A.B + B^2
3. A^2 - B^2 = ( A + B ).(A - B )
4. ( A + B )^3 = A^3 + 3A^2B + 3AB^2 + B^3
5. ( A - B )^3 = A^3 - 3A^2B + 3AB^2 - B^3
6. A^3 + B^3 = ( A + B ).( A^2 - AB + B^2 )
7. A^3 - B^3 = ( A - B ).( A^2 + AB + B^2 )
{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}
{\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}
{\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}
{\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}
{\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}
{\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}
{\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}
7 hằng đẳng thức cơ bản:
1, (a + b)2 = a2 + 2ab + b2
2, (a _ b)2 = a2 _ 2ab + b2
3, a2 - b2 = ( a - b ). (a + b )
4. (A+B)3= A3+3A2B +3AB2+B3
5. (A – B)3 = A3- 3A2B+ 3AB2- B3
6. A3 + B3= (A+B)(A2- AB +B2)
7. A3- B3= (A- B)(A2+ AB+ B2)
Mở rộng :
8. (A+B+C)2= A2+ B2+C2+2 AB+ 2AC+ 2BC
9. (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
10. (a−b−c)2=a2+b2+c2−2ab−2ac+2bc(a−b−c)2=a2+b2+c2−2ab−2ac+2bc
11. a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
12. a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)3+3ab(a−b)
13. (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
14. a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)
15. (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
16. (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2
17. (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
19. ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33
20.ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
Giải thích các bước giải:
(A+B)²=A²+2AB+B²(A+B)²=A²+2AB+B²
(A−B)²=A²−2AB+B²(A−B)²=A²−2AB+B²
A²−B²=(A−B)(A+B)A²−B²=(A−B)(A+B)
(A+B)³=A³+3A²B+3AB²+B³(A+B)³=A³+3A²B+3AB²+B³
(A−B)³=A³−3A²B+3AB²−B³(A−B)³=A³−3A²B+3AB²−B³
A³+B³=(A+B)(A²−AB+B²)A³+B³=(A+B)(A²−AB+B²)
A³−B³=(A−B)(A²+AB+B²)