K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2016

tìm a để đa thức  x^2 +4x - a chia hết cho x+3

a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng vói ΔABC

b: \(AB=\sqrt{5^2-3^2}=4\left(cm\right)\)

AH=3*4/5=2,4cm

HB=4^2/5=3,2cm

c: FH/FA=BH/BA

EA/EC=BA/BC

BH/BA=BA/BC

=>FH/FA=EA/EC

a: Ta có: ΔABC cân tại A

mà AD là đường phân giác ứng với cạnh đáy BC

nên AD là đường cao ứng với cạnh BC

Xét ΔABC có 

AD là đường cao ứng với cạnh BC

BE là đường cao ứng với cạnh AC

AD cắt BE tại H

Do đó: H là trực tâm của ΔBAC

Suy ra: CH\(\perp\)AB

29 tháng 8 2021

Cảm ơn bạn!

 Nhưng mình biết làm câu a với b rồi bạn làm cho mình câu c với d với

30 tháng 5 2021

a)xét ΔBAD và ΔBCE có

\(\widehat{ADB}=\widehat{CEB}=90^o\)

\(\widehat{ABC}\) là góc chung

AB=BC(ΔABC cân tại B)

⇒ ΔBAD=ΔBCE(c.huyền.g.nhọn)

b)xét ΔEBF và ΔDBF có:

BF là cạnh chung

BD=BE(ΔBAD=ΔBCE)

\(\widehat{BDF}=\widehat{BEF}=90^o\)

⇒ΔEBF=ΔDBF(c.huyền.c.g.vuông)

\(\widehat{EBF}=\widehat{DBF}\)(2 góc tương ứng)

hay BF là phân giác của \(\widehat{ABC}\)(đ.p.cm)

c)xét ΔABF và ΔCBF có:

AC=BC(ΔABC cân tại B)

BF là cạnh chung

\(\widehat{EBF}=\widehat{DBF}\)(ΔEBF=ΔDBF)

⇒ΔABF=ΔCBF(c-g-c)

⇒FA=FC(2 cạnh tương ứng)

xét ΔAFC có:

FA+FC>AC(bất đẳng thức tam giác)

mà FA=FC⇒FA>\(\dfrac{AC}{2}\)(đ.p.cm)