K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2021

Vì ΔADE đồng dạng ΔEBK(câu c)

=>\(\dfrac{EK}{AE}=\dfrac{BE}{ED}\)(2 cặp cạnh tương ứng đồng dạng)         (1)

Vì ΔABK đồng dạng ΔMCK(câu a)

=> góc BAE= góc EMD

Xét ΔABE và ΔMDE, có:

  + góc AEB=góc DEM(đối đỉnh)

  + góc BAE=góc EMD(cmt)

=>ΔABE ~ ΔMDE(g.g)

=>\(\dfrac{AE}{EM}=\dfrac{BE}{ED}\)                                         (2)

Từ (1) và (2)=>\(\dfrac{EK}{AE}=\dfrac{AE}{EM}\)

=> AE.AE=EK.EM

=>\(^{AE^2}\)=EK.EM(đpcm)

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

b: ta có: ΔBAD=ΔBHD

=>BA=BH và DA=DH

Ta có: BA=BH

=>B nằm trên đường trung trực của AH(1)

Ta có: DA=DH

=>D nằm trên đường trung trực của AH(2)

Từ (1),(2) suy ra BD là đường trung trực của AH

Ta có: DA=DH

DH<DC

Do đó: DA<DC

c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

AK=HC

Do đó: ΔDAK=ΔDHC

=>\(\widehat{ADK}=\widehat{HDC}\)

mà \(\widehat{HDC}+\widehat{ADH}=180^0\)(hai góc kề bù)

nên \(\widehat{ADK}+\widehat{ADH}=180^0\)

=>K,D,H thẳng hàng

Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH và AK=HC

nên BK=BC

=>B nằm trên đường trung trực của KC(3)

Ta có: ΔDAK=ΔDHC

=>DK=DC

=>D nằm trên đường trung trực của CK(4)

Từ (3),(4) suy ra BD là đường trung trực của CK

=>BD\(\perp\)CK

13 tháng 5 2021

M N K P Q I H

13 tháng 5 2021

a) Vì \(MNPQ\)là hình bình hành.

\(\Rightarrow MQ//NP\)(tính chất).

\(\Rightarrow MQ//PI\).

Xét \(\Delta HMQ\)và \(\Delta HPI\)có:

\(\widehat{MHQ}=\widehat{PHI}\)(vì đối đỉnh).

\(\widehat{QMH}=\widehat{IPH}\)(vì \(MQ//PI\)).

\(\Rightarrow\Delta HMQ~\Delta HPI\left(g.g\right)\)(điều phải chứng minh).