Cho tam giác ABC có cạnh BC = a. Trên cạnh AB lấy các điểm D và E sao cho AD = DE = EB. Từ D, E kẻ các đường thẳng song song với BC, cắt cạnh AC theo thứ tự tại M, N (h.5).
Tính theo a độ dài của các đoạn thẳng DM và EN ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong ΔABC, ta có: DM // BC (gt)
Nên (Hệ quả định lí Ta-lét)
Suy ra : (3)
Từ (1) và (3) suy ra:
Suy ra:
Trong ΔABC, ta có: EN // BC (gt)
Từ (2) và (4) suy ra: hay
Dựa vào tính chất đường trung bình của tam giác:
DM=EN/2
theo tính chất đương trung bình của hình thang:
EN=(DM+m)/2
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
Hình vẽ nè:
Có vẻ hơi khó hiểu nhỉ
Nhưng ko sao
bn tk
Cho
mik
nha
Ta có : DC = AC - AD = 40 - 10 = 30 cm
Vì DE // AB Theo hệ quả Ta lét ta có :
\(\dfrac{DC}{AC}=\dfrac{DE}{AB}\Rightarrow\dfrac{30}{40}=\dfrac{DE}{30}\Rightarrow DE=\dfrac{30.30}{40}=\dfrac{900}{40}=22,5\)cm