K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét ΔAHB vuông tại H và ΔACE vuông tại E có

góc A chung

=>ΔABH đồng dạng với ΔACE

Xét ΔBHC vuông tại H và ΔCFA vuông tại F có

góc BCA=góc CAF

=>ΔBHC đồng dạng với ΔCFA

c: AB/AC=AH/AE

=>AB*AE=AH*AC

BC/AC=CH/AF=BH/CF

=>DA/AC=CH*AF

=>AC*CH=AD*AF

=>AC^2=AB*AE+AD*AF

2 tháng 4 2017

mk cũng đang mắc câu này,bạn bk chưa trả lời giúp mk đi

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Ta có:

\(MN \bot CE\) (gt)

\(AB \bot CE\) (gt)

Suy ra \(MN\) // \(AB\)

\(MN\)Mà \(AB\) // \(CD\) (do \(ABCD\) là hình bình hành) nên \(MN\)

 // \(CD\)

Xét tứ giác \(MNCD\) ta có:

\(MN\) // \(CD\) (cmt)

\(MD\) // \(CN\) (do \(AD\) // \(BC\))

Suy ra \(MNCD\) là hình bình hành

Lại có:

 \(AD = 2AB\) (gt);    

\(AD = 2MD\) (do \(M\) là trung điểm của \(AD\))

\(AB = CD\) (do \(ABCD\) là hình bình hành)

Suy ra \(MD = CD\)

Hình bình hành \(MNCD\) có \(MD = CD\) (cmt) nên là hình thoi

b) Vì \(MNCD\) là hình thoi nên \(MD = CD = NC = MN = \frac{1}{2}AD = \frac{1}{2}BC\) (do \(AD = BD\))

Do \(NC = \frac{1}{2}BC\) nên \(N\) là trung điểm của \(BC\)

Xét \(\Delta EBC\) vuông tại \(E\) có \(EN\) là trung tuyến nên \(EN = \frac{1}{2}BC\)

Suy ra \(EN = NB = NC = \frac{1}{2}BC\)

Suy ra \(\Delta NEC\) cân tại \(N\)

Mà \(NF\) là đường cao (do \(MF \bot EC\))

Suy ra \(NF\) cũng là trung tuyến, phân giác, trung trực của \(\Delta NEC\)

Suy ra \(F\) là trung điểm \(EC\)

Xét \(\Delta MEC\) có \(MF\) là đường cao đồng thời là trung tuyến

Suy ra \(\Delta EMC\) cân tại \(M\)

c) Vì \(AB\) // \(MN\) (cmt)

Suy ra \(\widehat {{\rm{AEN}}} = \widehat {{\rm{EMN}}}\) (so le trong)

Mà \(\widehat {{\rm{EMN}}} = \widehat {{\rm{NMC}}}\) (do \(MF\) là phân giác)

\(\widehat {{\rm{NMC}}} = \widehat {{\rm{MCD}}}\) (do \(MN\) // \(CD\))

Suy ra \(\widehat {{\rm{AEM}}} = \widehat {{\rm{MCD}}}\)

Mà \(\widehat {{\rm{MCD}}} = \frac{1}{2}\widehat {{\rm{BCD}}}\) (do \(MNCD\) là hình thoi)

Và \(\widehat {{\rm{BCD}}} = \widehat {{\rm{BAD}}}\) (do \(ABCD\) là hình bình hành)

Suy ra \(\widehat {{\rm{AEM}}} = \frac{1}{2}\widehat {{\rm{BAD}}}\)

Suy ra \(\widehat {BAD} = 2\widehat {AEM}\)

a: Xét ΔAEC vuông tại E và ΔAHB vuông tại H có

góc EAC chung

=>ΔAEC đồng dạng với ΔAHB

=>AE/AH=AC/AB

=>AE*AB=AC*AH

b: Xét ΔCBH vuông tại H và ΔACF vuông tại F có

góc BCH=góc CAF

=>ΔCBH đồng dạng với ΔACF