K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDEF vuông tại E cso EH là đường cao

nên \(EH\cdot DF=ED\cdot EF\)(hệ thức lượng)

\(DF=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(EH=\dfrac{ED\cdot EF}{DF}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

b: Xét ΔEHD vuông tại H có HM là đường cao

nên \(EM\cdot ED=EH^2\left(1\right)\)

Xét ΔEHF vuông tại H có HN là đường cao

nên \(EN\cdot EF=EH^2\left(2\right)\)

Từ (1) và (2) suy ra \(EM\cdot ED=EN\cdot EF\)

hay EM/EF=EN/ED

Xét ΔEMN vuông tại E và ΔEFD vuông tại E có

EM/EF=EN/ED

Do đó ΔEMN\(\sim\)ΔEFD

a: \(S_{DEF}=\dfrac{EH\cdot DF}{2}=\dfrac{ED\cdot EF}{2}\)

nên \(EH\cdot DF=ED\cdot EF\)

b: \(DF=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(EH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

c: Xét ΔDEF vuông tại E có EH là đường cao

nên \(EF^2=DF\cdot HF\)

d: Xét ΔEHD vuông tại H có HM là đường cao

nên \(EM\cdot ED=EH^2\left(1\right)\)

Xét ΔEHF vuông tại H có HN là đường cao

nên \(EN\cdot EF=EH^2\left(2\right)\)

Từ (1) và (2) suy ra \(EM\cdot ED=EN\cdot EF\)

hay EM/EF=EN/ED

Xét ΔEMN và ΔEFD có

EM/EF=EN/ED

góc MEN chung

Do đo: ΔEMN đồng dạng với ΔEFD

3 tháng 5 2020

E D F H K M N I

Bài làm

a) Xét tam giác DEH và tam giác DEF có:

\(\widehat{DHE}=\widehat{DEF}\left(=90^0\right)\)

\(\widehat{D}\) chung

=> Tam giác DEH ~ Tam giác DEF ( g - g )

=> \(\frac{DE}{DF}=\frac{HE}{EF}\)

\(\Rightarrow DE.EF=DF.EH\) ( đpcm )

b) Xét tam giác DEF vuông tại E có:

DF2 = DE2 + EF2

hay DF2 = 152 + 202

=> DF2 = 225 + 400

=> DF2 = 625

=> DF = 25 ( cm )

Vì tam giác DEH ~ Tam giác DEF ( cmt )

=> \(\frac{DH}{DE}=\frac{DE}{DF}\)

hay \(\frac{DH}{15}=\frac{15}{25}\Rightarrow DH=9\left(cm\right)\)

Ta có: DH + HF = DF

hay 9 + HF = 25

=> HF = 16 ( cm )

c) Xét tam giác HEF và tam giác EDF có:

\(\widehat{EHF}=\widehat{DEF}\left(=90^0\right)\)

\(\widehat{F}\) chung

=> Tam giác HEF ~ Tam giác EDF ( g - g )

=> \(\frac{EF}{DF}=\frac{HF}{EF}\Rightarrow EF^2=DF.HF\) ( đpcm )

a: Xét ΔEHD và ΔEHF có

EH chung

\(\widehat{HED}=\widehat{HEF}\)

ED=EF

Do đó: ΔEHD=ΔEHF

c: Ta có; ΔEHD=ΔEHF

=>HF=HD

mà H nằm giữa D và F

nên H là trung điểm của DF

=>\(HD=\dfrac{DF}{2}=3\left(cm\right)\)

ΔEHD vuông tại H

=>\(EH^2+HD^2=ED^2\)

=>\(EH^2=5^2-3^2=16\)

=>\(EH=\sqrt{16}=4\left(cm\right)\)

loading...

15 tháng 5 2021

a) xét ΔHED và ΔDEF có 

\(\widehat{EHD}=\widehat{EDF}=\)90o

\(\widehat{E} chung\)

=> ΔHED ∼ ΔDEF (gg)

b) Xét ΔDEF có \(\widehat{D}=\)90o

=> DE2+DF2=EF2

=>62+82=EF2

=> EF=10 cm

SΔDEF=\(\dfrac{ED.DF}{2}=\dfrac{DH.EF}{2}\)=> ED.DF=DH.EF => 6.8=DH.10

=> DH =4,8 cm

c) Xét ΔDEH có \(\widehat{EHD}=90\)o

=> HD2.HE2=ED2

=>4.82+HE2=62

=> HE=3.6

ta lại có DI là phân giác 

=> \(\dfrac{EI}{IH}=\dfrac{ED}{HD}\)

=>\(\dfrac{EI}{EH-EI}=\dfrac{6}{4.8} \)=>\(\dfrac{EI}{3.6-EI}=\dfrac{6}{4.8}\)=>EI=2

=> IH=EH-EI=3.6-2=1.6

a) Xét ΔHED vuông tại H và ΔDEF vuông tại D có

\(\widehat{HED}\) chung

Do đó: ΔHED\(\sim\)ΔDEF(g-g)

\(\text{#TNam}\)

`a,` Xét Tam giác `HED` và Tam giác `HFD` có

`DE = DF (\text {Tam giác DEF cân tại D})`

\(\widehat{E}=\widehat{F}\) `(\text {Tam giác DEF cân tại D})`

`=> \text {Tam giác HED = Tam giác HDF (ch-gn)}`

`b,` Vì Tam giác `HED =` Tam giác `HFD (a)`

`-> HE = HF (\text {2 cạnh tương ứng})`

Xét Tam giác `HEM` và Tam giác `HFN` có:

`HE = HF (CMT)`

\(\widehat{E}=\widehat{F}\) `(a)`

\(\widehat{EMH}=\widehat{FNH}=90^0\)

`=> \text {Tam giác HEM = Tam giác HFN (ch-gn)}`

`-> EM = FN (\text {2 cạnh tương ứng})`

Ta có: \(\left\{{}\begin{matrix}DE=MD+ME\\DF=ND+NF\end{matrix}\right.\)

Mà `DE = DF, ME = NF`

`-> MD = ND`

Xét Tam giác `DMN: DM = DN (CMT)`

`-> \text {Tam giác DMN cân tại D}`

`->`\(\widehat{DMN}=\widehat{DNM}=\)\(\dfrac{180-\widehat{A}}{2}\)

Tam giác `DEF` cân tại `D`

`->`\(\widehat{E}=\widehat{F}=\)\(\dfrac{180-\widehat{A}}{2}\)

`->`\(\widehat{DMN}=\widehat{E}\)

Mà `2` góc này nằm ở vị trí đồng vị

`-> \text {MN // EF (t/c 2 đt' //)}`

loading...