Hình thang cân ABCD (AB //CD) có \(\widehat{A}=70^0\). Khẳng định nào dưới đây là đúng ?
(A) \(\widehat{C}=110^0\) (B) \(\widehat{B}=110^0\) (C) \(\widehat{C}=70^0\) (D) \(\widehat{D}=70^0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vì góc A+góc C=180 độ
nên ABCD là tứ giác nội tiếp
Xét đường tròn ngoại tiếp tứ giác ABCD có
góc ABD nội tiếp chắn cung AD
góc BDC là góc nội tiếp chắn cung BC
sđ cung AD=sđ cung BC
Do đó: góc ABD=góc BDC
=>ABCD là hình thang và góc ADB=góc BDC
=>BD là phân giác của góc D
b: Vì ABCD là hình thang
mà ABCD nội tiếp đường tròn
nên ABCD là hình thang cân
Ta có:
\(\widehat{B}=\widehat{A}+10^o \)(1)
\(\widehat{C}=\widehat{B}+10^o\)(2)
\(\widehat{D}=\widehat{C}+10^o\)(3)
Cộng cả hai vế của (1) với (2) và (3) ta có:
\(\widehat{B}+\widehat{C}+\widehat{D}=\widehat{A}+\widehat{B}+\widehat{C}+30^o\)
\(\Rightarrow\)\(\widehat{B}+\widehat{C}+\widehat{D}-\widehat{A}+\widehat{B}+\widehat{C}=30^o\)
\(\Leftrightarrow\)\(\widehat{D}-\widehat{A}=30^o\)
\(\Rightarrow\)\(\widehat{A}=75^o\)
\(\Rightarrow\)\(\widehat{B}=85^o\)
Vậy khẳng định B là đúng
Bài giải:
Ta có 200; 1800
Từ 200
=> = 200 +
Nên 200 + +=200 +2 =1800
=> 2=1600 => = 800
Thay = 800 vào = 200 + ta được =200 + 800 = 1000
Lại có ; 1800
nên
Ta có :AB//CD\(\Rightarrow\widehat{A}+\widehat{D}=180^o\) (do 2 góc ở vị trí trong cùng phía )
Từ \(\widehat{A}-\widehat{D}=20^o\Rightarrow\widehat{A}=20^o+\widehat{D}\) \(^{\left(1\right)}\)
Nên \(\widehat{A}+\widehat{D}=20^o+\widehat{D}+\widehat{D}=20^o+2.\widehat{D}=180^o\)
\(\Rightarrow2\widehat{D}=160^o\Rightarrow\widehat{D}=80^o\)
Thay \(\widehat{D}=80^o\) vào \(^{\left(1\right)}\) , ta được:
\(\widehat{A}=20^o+80^o=100^o\)
Lại có:\(\widehat{B}+\widehat{C}=180^o\) (do 2 góc ở vị trí trong cùng phía )
và \(\widehat{B}=2.\widehat{C}\)
nên \(2.\widehat{C}+\widehat{C}=180^o\) hay \(3.\widehat{C}=180^o\Rightarrow\widehat{C}=60^o\)
Do đó: \(\widehat{B}=2.\widehat{C}=2.60^o=120^o\)
Vậy \(\widehat{A}=100^o;\widehat{B}=120^o;\widehat{C}=60^o;\widehat{D}=80^o\)
Câu A
A