Hình thang ABCD (BC // AD) có \(\widehat{C}=3\widehat{D}\). Khẳng định nào dưới đây đúng ?
(A) \(\widehat{A}=45^0\) (B) \(\widehat{B}=45^0\) (C) \(\widehat{D}=45^0\) (D) \(\widehat{D}=60^0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B là khẳng định sai
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\AD\perp CD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)
\(CD=\left(SCD\right)\cap\left(BCD\right)\)
\(\Rightarrow\widehat{SDA}\) là góc giữa (SDC) và (BCD)
\(tan\widehat{SDA}=\dfrac{SA}{AD}=\sqrt{2}\Rightarrow\widehat{SDA}\approx54^044'\)
Ta có:
\(\widehat{B}=\widehat{A}+10^o \)(1)
\(\widehat{C}=\widehat{B}+10^o\)(2)
\(\widehat{D}=\widehat{C}+10^o\)(3)
Cộng cả hai vế của (1) với (2) và (3) ta có:
\(\widehat{B}+\widehat{C}+\widehat{D}=\widehat{A}+\widehat{B}+\widehat{C}+30^o\)
\(\Rightarrow\)\(\widehat{B}+\widehat{C}+\widehat{D}-\widehat{A}+\widehat{B}+\widehat{C}=30^o\)
\(\Leftrightarrow\)\(\widehat{D}-\widehat{A}=30^o\)
\(\Rightarrow\)\(\widehat{A}=75^o\)
\(\Rightarrow\)\(\widehat{B}=85^o\)
Vậy khẳng định B là đúng
Lời giải:
\(\varphi=(AB,CD')=(AB, BA')=\widehat{ABA'}=\frac{1}{2}\widehat{ABB'}=\frac{1}{2}.120^0=60^0\)
Đáp án B.
Với ∆ABC thì các khẳng định
a) là sai
b) là đúng
c) là đúng
d) là sai
Cọn C