Cho A=\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{2014.2015.2016}\).So sánh A với \(\dfrac{1}{4}\)
Giúp mình nha!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2A=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{18.19.20}\)
\(\Rightarrow2A=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\)
\(\Rightarrow2A=\dfrac{1}{1.2}-\dfrac{1}{19.20}< \dfrac{1}{1.2}\)
\(\Rightarrow2A< \dfrac{1}{2}\)
\(\Rightarrow A< \dfrac{1}{4}\) (đpcm)
* Chứng tỏ
Ta có :\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\)
= \(\dfrac{1}{1.2.3}.\dfrac{2}{2}+\dfrac{1}{2.3.4}.\dfrac{2}{2}+...+\dfrac{1}{98.99.100}.\dfrac{2}{2}\)
= \(\dfrac{1}{2}.\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{98.99.100}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{1}{1.2}+0+0+...+0+\dfrac{-1}{99.100}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{1}{2}+\dfrac{-1}{9900}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{4850}{9900}+\dfrac{-1}{9900}\right)\)
= \(\dfrac{1}{2}.\dfrac{4849}{9900}\)
= \(\dfrac{4849}{19800}\)
\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{10.11.12}\)
\(=\dfrac{1}{2}.\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{10.11.12}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{11.12}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{132}\right)\)
\(=\dfrac{1}{2}.\dfrac{65}{132}=\dfrac{65}{264}\)
a, A= 1/2. (2/1.2.3+2/2.3.4+2/3.4.5+...+2/18.19.20) A=1/2. (1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5+...+1/18.19-1/19.20) A=1/2. (1/1.2-1/19.20) A=1/2. 189/380 A= 189/760
Tìm y:
-y:1/2-5/2=4+1/2
-y:1/2 = 4+1/2+5/2
-y:1/2 = 7
-y = 7.2
y = -14
Vậy y = -14
a) Ta có:
3A= \(1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\left(1\right)\)
A= \(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\left(2\right)\)
Lấy (1) - (2) ta được:
1-\(\dfrac{1}{3^{100}}\)
b) Ta xét:
\(\dfrac{1}{1.2}-\dfrac{1}{2.3}=\dfrac{2}{1.2.3},...,\dfrac{1}{37.38}-\dfrac{1}{38.39}=\dfrac{2}{37.38.39}\)
Ta có:
2B=\(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+..+\dfrac{2}{37.38.39}\)
=\(\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)+\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)+..+\left(\dfrac{1}{37.38}-\dfrac{1}{38.39}\right)\)
=\(\dfrac{1}{1.2}-\dfrac{1}{38.39}=\dfrac{740}{38.39}=\dfrac{370}{741}\)
Vậy \(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+..+\dfrac{2}{37.38.39}\)
=\(\dfrac{370}{741}\)
Nếu bn cảm thấy mk đúng tick cho mk nhé!
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{2014.2015.2016}\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2014.2015}+\dfrac{1}{2015.2016}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2015.2016}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2015.2016}\right)\)
\(A=\dfrac{1}{4}-\dfrac{1}{2.2015.2016}< \dfrac{1}{4}\)
\(=>A< \dfrac{1}{4}\)
Chúc bn học tốt
Cảm ơn bn nhiều