K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

Quy đồng mẫu thức nhiều phân thức

Quy đồng mẫu thức nhiều phân thức

28 tháng 5 2017

7 tháng 11 2017

Bài 1 . Chia :( x3 + 5x2 - 4x - 20) cho ( x2 + 3x - 10) ta được x+ 2

Chia :( x3 + 5x2 - 4x - 20) cho ( x2 + 7x + 10) ta được x - 2

Do đó , ta có :

\(\dfrac{1}{x^2+3x-10}=\dfrac{x+2}{\left(x^2+3x-10\right)\left(x+2\right)}=\dfrac{x+2}{x^3+5x^2-4x-20}\)

Và : \(\dfrac{x}{x^2+7x+10}=\dfrac{x\left(x-2\right)}{\left(x^2+7x+10\right)\left(x-2\right)}=\dfrac{x^2-2x}{x^3+5x^2-4x-20}\)

7 tháng 11 2017

Bài 2 . a) Ta có :

\(\dfrac{x-1}{x^3+1}\)( giữ nguyên)

\(\dfrac{2x}{x^2-x+1}=\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{2x^2+2x}{x^3+1}\)

\(\dfrac{2}{x+1}=\dfrac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{2x^2-2x+2}{x^3+1}\)

b) Ta có MTC = x2( y - z)2

Ta có :

\(\dfrac{x+y}{x\left(y-z\right)^2}=\dfrac{x^2+xy}{x^2\left(y-z\right)^2}\)

\(\dfrac{y}{x^2\left(y-z\right)^2}\)( giữ nguyên )

\(\dfrac{z}{x^2}=\dfrac{z\left(y-z\right)^2}{x^2\left(y-z\right)^2}\)

a: 1/x^2y=1/x^2y

3/xy=3x/x^2y

b: \(\dfrac{x}{x^2+2xy+y^2}=\dfrac{x}{\left(x+y\right)^2}\)

\(\dfrac{2x}{x^2+xy}=\dfrac{2}{x+y}=\dfrac{2x+2y}{\left(x+y\right)^2}\)

28 tháng 7 2023

Mik cảm ơn ạ

\(\dfrac{1}{3x+xy}=\dfrac{1}{x\left(y+3\right)}=\dfrac{\left(x+y\right)^2}{x\left(y+3\right)\left(x+y\right)^2}\)

\(2x+2y=2\left(x+y\right)=\dfrac{2\left(x+y\right)\cdot x\left(y+3\right)\left(x+y\right)^2}{x\left(y+3\right)\left(x+y\right)^2}\)

\(\dfrac{1}{x^2+2xy+y^2}=\dfrac{3x+xy}{x\left(y+3\right)\left(x+y\right)^2}\)

\(\dfrac{1}{3x+3y}=\dfrac{1}{3\left(x+y\right)}=\dfrac{2\cdot\left(x+y\right)}{6\left(x+y\right)^2}\)

\(\dfrac{1}{2x+2y}=\dfrac{1}{2\left(x+y\right)}=\dfrac{3\left(x+y\right)}{6\left(x+y\right)^2}\)

\(\dfrac{1}{x^2+2xy+y^2}=\dfrac{1}{\left(x+y\right)^2}=\dfrac{6}{6\left(x+y\right)^2}\)

23 tháng 1

đề viết là 1/2y+2x mà bạn

 

 

 

 

22 tháng 11 2022

MTC=xy(x-y)(x+2y)

\(\dfrac{x+y}{x}=\dfrac{y\left(x+y\right)\left(x-y\right)\left(x+2y\right)}{xy\left(x-y\right)\left(x+2y\right)}\)

\(\dfrac{x}{x-y}=\dfrac{x^2y\left(x+2y\right)}{xy\left(x-y\right)\left(x+2y\right)}\)

\(\dfrac{2}{x^2+2xy}=\dfrac{2}{x\left(x+2y\right)}=\dfrac{y\left(x-y\right)}{xy\left(x-y\right)\left(x+2y\right)}\)

\(\dfrac{1}{xy+2y^2}=\dfrac{1}{y\left(x+2y\right)}=\dfrac{x\left(x-y\right)}{xy\left(x-y\right)\left(x+2y\right)}\)