K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

25 tháng 6 2015

+TH1: có 1 số < 0 là a, 2 số lớn hơn 0 là b,c
=> bc > 0 mà a < 0
=> abc < 0 (trái giả thiết) => không tồn tại trường hợp này.

+TH2: 2 số <0 là b,c ; 1 số lớn hơn 0 là a.
=> bc > 0; b+c < 0; a > 0
a+b+c > 0 => a > -(b+c) > 0 => a.(b+c) < -(b+c).(b+c) (nhân cả 2 vế với 1 số < 0 là (b+c) nên đổi chiều)
=> ab+bc+ca=a(b+c) + bc < -(b+c)+ bc = -(b2+c2+bc) < 0 (do b2,c2,bc > 0) => trái giả thiết => không tồn tại trường hợp này.

+TH3: a,b,c < 0
=>abc < 0 => trái giả thiết => không tồn tại trường hợp này.

Vậy: a,b,c > 0

25 tháng 4 2019

sao th2 k suy ra ab>0 và c<0 nên abc<0 luôn

22 tháng 9 2019

Áp dụng BĐT Cô -si cho 3 số dương:

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

15 tháng 2 2016

ôi dào !dễ ợt ! cô em mới cho học ngày hôm qua !k đi rùi em trình bày cho cách làm !

13 tháng 8 2017

3) Đặt b+c=x;c+a=y;a+b=z.

=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2

BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)

VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)

\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)

Dấu''='' tự giải ra nhá

13 tháng 8 2017

Bài 4 

dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)

rồi khai căn ra \(\Rightarrow\)dpcm. 

đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)

2 tháng 9 2016

Ta có 15P = 3a5b \(\le\)\(\frac{9a^2+25b^2}{2}\)

\(\frac{\left(3a+5b\right)^2-30ab}{2}\)

=> 30P \(\le\)\(\frac{12^2}{2}\)

=> P \(\le\)\(\frac{12}{5}\)

Đạt được khi a = 2; b = \(\frac{6}{5}\)

29 tháng 12 2016

Mình mới học lớp 6

Nên không biết nha

Chúc các bạn học giỏi

4 tháng 3 2018

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>1\) (ĐK: a , b , c > 0)

Ta có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{b}{b+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}>\frac{a+b+c}{a+b+c}=1\)(*)

Từ (*) , suy ra: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>1\) (ĐPCM)