Có góc nhọn \(x\) nào mà :
(các kết quả tính góc được làm tròn đến phút và các kết quả tính độ dài và tính các tỉ số lượng giác được làm tròn đến chữ số thập phân thứ tư)
a) \(\sin x=1,0100\)
b) \(\cos x=2,3540\)
c) \(tgx=1,6754\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔBAC vuông tại A có
\(\sin C=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}=36^052'\)
=>\(\widehat{B}=53^08'\)
Vì các cạnh của tam giác lần lượt là 4cm, 6cm và 6cm nên tam giác đó là tam giác cân. Góc nhỏ nhất của tam giác là góc đối diện với cạnh 4cm.
Kẻ đường cao từ đỉnh của góc nhỏ nhất. Đường cao chia cạnh đáy thành hai phần bằng nhau mỗi phần 2cm.
Ta có: cosβ=26=13⇒β≈70∘32′cosβ=26=13⇒β≈70∘32′
Suy ra: α=180∘–(β+β)=180∘–2.70∘32'=38∘56′α=180∘–(β+β)=180∘–2.70∘32′=38∘56′
Vậy góc nhỏ nhất của tam giác bằng 38∘56′38∘56′.
\(AH=\sqrt{25\cdot64}=40\left(cm\right)\)
Xét ΔAHB vuông tại H có
\(\tan B=\dfrac{AH}{HB}=\dfrac{40}{25}=1.6\)
nên \(\widehat{B}\simeq58^0\)
hay \(\widehat{C}=32^0\)
Cho ΔABC cân tại A có AB=AC=3cm; BC=4cm
BH=1/2BC=1/2x4=2(cm)
Xét ΔABH vuông tại H có \(\cos B=\dfrac{BH}{AB}=\dfrac{2}{3}\)
nên \(\widehat{B}\simeq48^011'\)
=>Góc cần tìm có số đo là \(1^049'\)
\(\sin39^013'=0,6322\)
\(\cos52^018'=0,6115\)
\(\tan13^020'=0,2370\)
\(\cot10^017'=5,5118\)
\(\sin54^0=0,8090\)
\(\cos45^0=0,7071\)
Chiều cao cột cờ là cạnh đối diên với góc giữa tia sang mặt trời và bóng cột cờ, chiều dài bóng là cạnh kề góc nhọn.
\(\tan B=\dfrac{35}{48}\)nên \(\widehat{B}=36^06'\)
Không có góc nhọn nào như vậy bởi nếu x là góc nhọn thì \(\sin x< =1;\cos x< =1\)