Kết quả của phép tính \(\left(x-5\right)\left(x+3\right)\) lf :
(A) \(x^2-15\) (B) \(x^2-8x-15\)
(C) \(x^2+2x-15\) (D) \(x^2-2x-15\)
Hãy chọn kết quả đúng ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
(x − 5)(x + 3) = x(x + 3) – 5( x + 3) = x 2 + 3x - 5x - 15 = x 2 − 2x − 15
Ta có:7x(2-3x)+x2(2x+1)-2x2(x-2)+2x(8x-7)
=14x-21x2+2x3+x2-2x3+4x2+16x2-14x
=(14x-14x)+(-21x2+x2+4x2+16x2)+(2x3-2x3)
=0
a) (x2 – 2x+ 1)(x – 1)
= x2 . x + x2.(-1) + (-2x). x + (-2x). (-1) + 1 . x + 1 . (-1)
= x3 - x2 - 2x2 + 2x + x – 1
= x3 - 3x2 + 3x – 1
b) (x3 – 2x2 + x -1)(5 – x)
= x3 . 5 + x3 . (-x) + (-2 x2) . 5 + (-2x2)(-x) + x . 5 + x(-x) + (-1) . 5 + (-1) . (-x)
= 5 x3 – x4 – 10x2 + 2x3 +5x – x2 – 5 + x
= - x4 + 7x3 – 11x2+ 6x - 5.
Suy ra kết quả của phép nhan:
(x3 – 2x2 + x -1)(x - 5) = (x3 – 2x2 + x -1)(-(5 - x))
= - (x3 – 2x2 + x -1)(5 – x)
= - (- x4 + 7x3 – 11x2+ 6x -5)
= x4 - 7x3 + 11x2- 6x + 5
a) (x2 – 2x+ 1)(x – 1)
= x2 . x + x2.(-1) + (-2x). x + (-2x). (-1) + 1 . x + 1 . (-1)
= x3 - x2 - 2x2 + 2x + x – 1
= x3 - 3x2 + 3x – 1
b) (x3 – 2x2 + x -1)(5 – x)
= x3 . 5 + x3 . (-x) + (-2 x2) . 5 + (-2x2)(-x) + x . 5 + x(-x) + (-1) . 5 + (-1) . (-x)
= 5 x3 – x4 – 10x2 + 2x3 +5x – x2 – 5 + x
= - x4 + 7x3 – 11x2+ 6x - 5.
Suy ra kết quả của phép nhan:
(x3 – 2x2 + x -1)(x - 5) = (x3 – 2x2 + x -1)(-(5 - x))
= - (x3 – 2x2 + x -1)(5 – x)
= - (- x4 + 7x3 – 11x2+ 6x -5)
= x4 - 7x3 + 11x2- 6x + 5
b)(x2+x+1)(x2+x+2)-12
Đặt t=x2+x+1
t(t+1)-12=t2+t-12
=(t-3)(t+4)=(x2+x+1-3)(x2+x+1+4)
=(x2+x-2)(x2+x+5)
=(x-1)(x+2)(x2+x+5)
c)(x2+8x+7)(x2+8x+15)+15
Đặt t=x2+8x+7
t(t+8)+15=t2+8t+15
=(t+3)(t+5)
=(x2+8x+7+3)(x2+8x+7+15)
=(x2+8x+10)(x2+8x+22)
d)(x+2)(x+3)(x+4)(x+5)-24
=(x2+7x+10)(x2+7x+12)-24
Đặt t=x2+7x+10
t(t+2)-24=(t-4)(t+6)
=(x2+7x+10-4)(x2+7x+10+6)
=(x2+7x+6)(x2+7x+16)
=(x+1)(x+6)(x2+7x+16)
a/ Đặt x2 + 4x + 8 = a
Thì đa thức ban đầu thành
a2 + 3ax + 2x2 = (a2 + 2ax + x2) + (ax + x2)
= (a + x)2 + x(a + x) = (a + x)(a + 2x)
a) \(8 - \left( {x - 15} \right) = 2.\left( {3 - 2x} \right)\)
\(8 - x + 15 = 6 - 4x\)
\( - x + 4x = 6 - 8 - 15\)
\(3x = - 17\)
\(x = \left( { - 17} \right):3\)
\(x = \dfrac{{ - 17}}{3}\)
Vậy nghiệm của phương trình là \(x = \dfrac{{ - 17}}{3}\).
b) \( - 6\left( {1,5 - 2u} \right) = 3\left( { - 15 + 2u} \right)\)
\( - 9 + 12u = - 45 + 6u\)
\(12u - 6u = - 45 + 9\)
\(u = \left( { - 36} \right):6\)
\(6u = - 36\)
\(u = - 6\)
Vậy nghiệm của phương trình là \(u = - 6\).
c) \({\left( {x + 3} \right)^2} - x\left( {x + 4} \right) = 13\)
\(\left( {{x^2} + 6x + 9} \right) - \left( {{x^2} + 4x} \right) = 13\)
\({x^2} + 6x + 9 - {x^2} - 4x = 13\)
\(\left( {{x^2} - {x^2}} \right) + \left( {6x - 4x} \right) = 13 - 9\)
\(2x = 4\)
\(x = 4:2\)
\(x = 2\)
Vậy nghiệm của phương trình là \(x = 2\).
d) \(\left( {y + 5} \right)\left( {y - 5} \right) - {\left( {y - 2} \right)^2} = 5\)
\(\left( {{y^2} - 25} \right) - \left( {{y^2} - 4y + 4} \right) = 5\)
\({y^2} - 25 - {y^2} + 4y - 4 = 5\)
\(\left( {{y^2} - {y^2}} \right) + 4y = 5 + 4 + 25\)
\(4y = 34\)
\(y = 34:4\)
\(y = \dfrac{{17}}{2}\)
Vậy nghiệm của phương trình là \(y = \dfrac{{17}}{2}\).
Ta có: \(\left(x^3+8\right)=\left(x+2\right)\left(x^2-2x+4\right)\)
=> \(\left(x^3+8\right):\left(x+2\right)\\ =\left(x+2\right)\left(x^2-2x+4\right):\left(x+2\right)\\ =x^2-2x+4\)
Đáp án: D
D
D