K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

lấy 1 ở đâu để trừ đi \(sin^2\alpha\) ạ????

Bài 2: 

\(\cos a=\sqrt{1-\left(\dfrac{7}{25}\right)^2}=\dfrac{24}{25}\)

\(\tan a=\dfrac{7}{25}:\dfrac{24}{25}=\dfrac{7}{24}\)

\(\cot a=\dfrac{24}{7}\)

Đặt \(x=\alpha\)

a: \(\dfrac{1}{\cos^2x}=1+\tan^2x=1+\dfrac{1}{9}=\dfrac{10}{9}\)

nên \(\cos x=\dfrac{3\sqrt{10}}{10}\)

=>\(\sin x=\dfrac{\sqrt{10}}{10}\)

b: \(\dfrac{1}{\sin^2x}=1+\cot^2x=1+\dfrac{9}{16}=\dfrac{25}{16}\)

\(\Leftrightarrow\sin x=\dfrac{4}{5}\)

hay \(\cos x=\dfrac{3}{5}\)

13 tháng 10 2018

Ta có: sin2α + cos2α = 1

Suy ra: sin2α = 1 – cos2α = 1 – (0,8)2 = 1 – 0,64 = 0,36

Vì sin α > 0 nên sin α = √0,36 = 0,6

Suy ra: tg α = sin⁡α/cos⁡α = 0,6/0,8 = 3/4 = 0,75

cotg α = 1/tgα = 1/0,75 = 1,3333

Câu 1: 

\(\cos a=\sqrt{1-0.28^2}=\dfrac{24}{25}\)

\(\tan a=\dfrac{0.28}{0.96}=\dfrac{7}{24}\)

\(\cot a=\dfrac{1}{\tan a}=\dfrac{24}{7}\)

21 tháng 6 2021

a) Cần chứng minh \(\dfrac{1-cos\alpha}{sin\alpha}=\dfrac{sin\alpha}{1+cos\alpha}\)

\(\Rightarrow sin^2\alpha=\left(1-cos\alpha\right)\left(1+cos\alpha\right)\Rightarrow sin^2\alpha=1-cos^2\alpha\)

\(\Rightarrow sin^2\alpha+cos^2\alpha=1\)

Giả sử tam giác ABC vuông tại A

Ta có: \(\left\{{}\begin{matrix}sin^2B=\dfrac{AC^2}{BC^2}\\cos^2B=\dfrac{AB^2}{BC^2}\end{matrix}\right.\Rightarrow sin^2B+cos^2B=\dfrac{AC^2+AB^2}{BC^2}=\dfrac{BC^2}{BC^2}=1\)

 

 

21 tháng 6 2021

a)\(\dfrac{1-cosa}{sina}=\dfrac{sina}{1+cosa}\)

<=>\(\left(1-cosa\right)\left(1+cosa\right)=sin^2a\)

<=>\(1-cos^2a=sin^2a\) (lđ)

b)Ta có VT=\(\dfrac{cosa}{1+sina}+tga=\dfrac{cosa}{1+sina}+\dfrac{sina}{cosa}=\dfrac{cos^2a+sin^2a+sina}{\left(1+sina\right)cosa}=\dfrac{1+sina}{\left(1+sina\right)cosa}=\dfrac{1}{cosa}=vp\left(dpcm\right)\)

 

25 tháng 7 2023

\(\dfrac{\left(sina+cosa\right)^2-\left(sina-cosa\right)^2}{sina.cosa}=4\\ VT=\dfrac{sin^2a+2sinacosa+cos^2a-sin^2a+2sinacosa-cos^2a}{sinacosa}\\ =\dfrac{4sinacosa}{sinacosa}=4=VP\)

a: \(S=cos^2a\left(1+tan^2a\right)=cos^2a\cdot\dfrac{1}{cos^2a}=1\)

b: \(VP=\dfrac{1+sin2a-1+sin2a}{\dfrac{1}{2}\cdot sin2a}=\dfrac{2\cdot sin2a}{\dfrac{1}{2}\cdot sin2a}=4=VT\)

30 tháng 7 2018

ta có : \(tan\alpha+cot\alpha=3\Leftrightarrow\dfrac{sin\alpha}{cos\alpha}+\dfrac{cos\alpha}{sin\alpha}=3\)

\(\Leftrightarrow\dfrac{sin^2\alpha+cos^2\alpha}{sin\alpha.cos\alpha}=3\Leftrightarrow\dfrac{1}{sin\alpha.cos\alpha}=3\)

\(\Leftrightarrow sin\alpha.cos\alpha=\dfrac{1}{3}\) vậy \(sin\alpha.cos\alpha=\dfrac{1}{3}\)

24 tháng 4 2017

Hướng dẫn giải:

a) tgα=ABAC=AB⋅BCAC⋅BCtgα=ABAC=AB⋅BCAC⋅BC

⇒tgα=ABBC÷ACBC=sinαcosα⇒tgα=ABBC÷ACBC=sinαcosα

tgα⋅cotgα=ABAC⋅ACAB=1tgα⋅cotgα=ABAC⋅ACAB=1

cotgα=1tgα=1sinαcosα=cosαsinαcotgα=1tgα=1sinαcosα=cosαsinα

b) sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1

Nhận xét: Ba hệ thức tgα=sinαcosαtgα=sinαcosα

cotgα=cosαsinα;sin2α+cos2α=1cotgα=cosαsinα;sin2α+cos2α=1 là những hệ thức cơ bản bạn cần nhớ để giải một số bài tập khá

a) tgα=ABAC=AB⋅BCAC⋅BCtgα=ABAC=AB⋅BCAC⋅BC

⇒tgα=ABBC÷ACBC=sinαcosα⇒tgα=ABBC÷ACBC=sinαcosα

tgα⋅cotgα=ABAC⋅ACAB=1tgα⋅cotgα=ABAC⋅ACAB=1

cotgα=1tgα=1sinαcosα=cosαsinαcotgα=1tgα=1sinαcosα=cosαsinα

b) sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1

Nhận xét: Ba hệ thức tgα=sinαcosαtgα=sinαcosα

cotgα=cosαsinα;sin2α+cos2α=1cotgα=cosαsinα;sin2α+cos2α=1 là những hệ thức cơ bản bạn cần nhớ để giải một số bài tập khác.