Chứng minh rằng: -\(\dfrac{1}{2}\)\(\le\)\(\dfrac{\left(a+b\right)\left(1-ab\right)}{\left(1+a^2\right)\left(1+b^2\right)}\)\(\le\)\(\dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
BĐT cần CM tương đương với:
\(\left[\frac{(a+b)(1-ab)}{(a^2+1)(b^2+1)}\right]^2\leq \frac{1}{4}\)
Đặt $a+b=x; ab=y$ thì BĐT \(\Leftrightarrow \left(\frac{x(1-y)}{y^2+x^2-2y+1}\right)^2=\left(\frac{x(y-1)}{x^2+(y-1)^2}\right)^2\leq \frac{1}{4}\)
Điều này luôn đúng vì theo BĐT AM-GM:
\([x^2+(y-1)^2]^2=x^4+(y-1)^4+2x^2(y-1)^2\geq 2x^2(y-1)^2+2x^2(y-1)^2=[2x(y-1)]^2\)
\(\Rightarrow \frac{[x(y-1)]^2}{[x^2+(y-1)^2]^2}\leq \frac{[x(y-1)]^2}{[2x(y-1)]^2}=\frac{1}{4}\)
\(ab+1\le b\Rightarrow a+\dfrac{1}{b}\le1\)
Đặt \(\left(a;\dfrac{1}{b}\right)=\left(x;y\right)\Rightarrow x+y\le1\)
\(P=x+\dfrac{1}{x^2}+y+\dfrac{1}{y^2}=\left(\dfrac{x}{2}+\dfrac{x}{2}+\dfrac{1}{16x^2}\right)+\left(\dfrac{y}{2}+\dfrac{y}{2}+\dfrac{1}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)
\(P\ge3\sqrt[3]{\dfrac{x^2}{64x^2}}+3\sqrt[3]{\dfrac{y^2}{64y^2}}+\dfrac{15}{32}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(P\ge\dfrac{3}{2}+\dfrac{15}{32}\left(\dfrac{4}{x+y}\right)^2\ge\dfrac{3}{2}+\dfrac{15}{32}.\left(\dfrac{4}{1}\right)^2=9\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\) hay \(\left(a;b\right)=\left(\dfrac{1}{2};2\right)\)
Đành giải tạm bằng nick này vì sợ một vài thành phần trẻ trâu anti phá phách :poor:
Phân tích và giải
Dễ thấy: Dấu "=" khi \(a=b=c=1\)
\(\Rightarrow L=Σ\dfrac{a}{\left(a+1\right)^2}=\dfrac{3}{4}\text{ và }F=-\dfrac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=-\dfrac{1}{2}\)
Khi đó \(VT=L-F=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4}\)
Ta sẽ chia làm 2 bước cm:
B1: \(Σ\dfrac{a}{\left(a+1\right)^2}\le\dfrac{3}{4}\). Ta xét BĐT :
\(\dfrac{a}{\left(a+1\right)^2}=\dfrac{a}{a^2+2a+1}\le\dfrac{3\left(a^{2k}+a^k\right)}{8\left(a^{2k}+a^k+1\right)}\) (cần tìm \(k\) thỏa mãn)
\(\Leftrightarrow8a\left(a^{2k}+a^k+1\right)-3\left(a^{2k}+a^k\right)\left(a^2+2a+1\right)\le0\)\(\Leftrightarrow f\left(a\right)=-3a^{2k}+2a^{k+1}-3a^{k+2}+2a^{2k+1}-3a^{2k+2}-3a^k+8a\)
\(\Rightarrow f'\left(a\right)=2k\cdot-3a^{2k-1}+\left(k+1\right)2a^k-\left(k+2\right)3a^{k+1}+\left(2k+1\right)2a^{2k}-\left(2k+2\right)3a^{2k+1}-k\cdot3a^{k-1}+8a\)
\(\Rightarrow f'\left(1\right)=0\Rightarrow-12k=0\Rightarrow k=0\)
Hay BĐT phụ cần tìm là \(\dfrac{a}{a^2+2a+1}\le\dfrac{3\left(a^{2\cdot0}+a^0\right)}{8\left(a^{2\cdot0}+a^0+1\right)}=\dfrac{1}{4}\) (bài này \(k\) đẹp ra luôn \(\farac{1}{4}\) cộng vào là ok =))
\(\Leftrightarrow-\dfrac{\left(a-1\right)^2}{4\left(a+1\right)^2}\le0\) *Đúng* \(\RightarrowΣ\dfrac{a}{\left(a+1\right)^2}\leΣ\dfrac{1}{4}=\dfrac{3}{4}\)
B2: CM \(-\dfrac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\le-\dfrac{1}{2}\)
Tự cm nhé Goodluck :v
\(3=ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\Rightarrow abc\le1\)
\(\dfrac{1}{1+a^2\left(b+c\right)}=\dfrac{1}{1+a\left(ab+ac\right)}=\dfrac{1}{1+a\left(3-bc\right)}=\dfrac{1}{1+3a-abc}=\dfrac{1}{3a+\left(1-abc\right)}\le\dfrac{1}{3a}\)
Tương tự và cộng lại:
\(VT\le\dfrac{1}{3a}+\dfrac{1}{3b}+\dfrac{1}{3c}=\dfrac{ab+bc+ca}{3abc}=\dfrac{3}{3abc}=\dfrac{1}{abc}\)
Dễ dàng c/m : \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\)
Ta có : \(\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\dfrac{1}{a+b+4}\le\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}\right)\)
Suy ra : \(\Sigma\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le2.\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)=\dfrac{1}{2}.1=\dfrac{1}{2}\)
" = " \(\Leftrightarrow a=b=c=1\)