K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

a,ĐK:\(a>0;b>0;a\ne b\)

b,\(A=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\\ A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\\ A=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=0\)

Vậy khi A có nghĩa thì A không phụ thuộc vào a

27 tháng 5 2017

Ôn tập Căn bậc hai. Căn bậc ba

27 tháng 7 2018

\(a.b.A=\left(2-\dfrac{a-3\sqrt{a}}{\sqrt{a}-3}\right)\left(2-\dfrac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\right)=\left(2-\dfrac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}-3}\right)\left(2+\dfrac{\sqrt{a}\left(5-\sqrt{b}\right)}{5-\sqrt{b}}\right)=\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)=4-a\) ( a ; b ≥ 0 ; a # 9 ; b # 25 )

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Thay x=9 vào A, ta được:

\(A=\dfrac{3-1}{3+1}=\dfrac{1}{2}\)

c: Ta có: P=AB

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\left(\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{4}{\sqrt{x}-1}+\dfrac{5-x}{x-1}\right)\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\left(\dfrac{x+2\sqrt{x}-3+4\sqrt{x}+4+5-x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\cdot\dfrac{6\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{6}{\sqrt{x}+1}\)

2 tháng 7 2023

a) ĐKXĐ : \(x\sqrt{x}-1\ge0\Leftrightarrow x\ge1\)

b) \(B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right).\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(=\dfrac{2x+1-\sqrt{x}.\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}.\left(x-2\sqrt{x}+1\right)\)

\(=\dfrac{1}{\sqrt{x}-1}.\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)

c) Có : \(x=\dfrac{2-\sqrt{3}}{2}=\dfrac{4-2\sqrt{3}}{4}=\dfrac{\left(\sqrt{3}-1\right)^2}{4}\)

Khi đó B = \(\dfrac{\sqrt{3}-1}{2}-1=\dfrac{\sqrt{3}-3}{2}\)

2 tháng 7 2023

\(a,\) B có nghĩa \(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

\(b,B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(=\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{1+x\sqrt{x}-\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\)

\(=\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{1+x\sqrt{x}-\sqrt{x}-x}{1+\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(x-1\right)-\left(x-1\right)}{1+\sqrt{x}}\)

\(=\dfrac{\left(x-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\sqrt{x}-1\)

\(c,x=\dfrac{2-\sqrt{3}}{2}\Rightarrow B=\sqrt{\dfrac{2-\sqrt{3}}{2}}-1\)

\(=\dfrac{\sqrt{2}.\sqrt{2-\sqrt{3}}}{\sqrt{2}.\sqrt{2}}-\sqrt{2}\) (Nhân \(\sqrt{2}\) để khử căn dưới mẫu)

\(=\dfrac{\sqrt{4-2\sqrt{3}}-2\sqrt{2}}{2}\)

\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}-2\sqrt{2}}{2}\)

\(=\dfrac{\left|\sqrt{3}-1\right|-2\sqrt{2}}{2}\)

\(=\dfrac{\sqrt{3}-1-2\sqrt{2}}{2}\)

5 tháng 7 2021

Bài 1 :

a, ĐKXĐ : \(\dfrac{1}{2-x}\ge0\)

Mà 1 > 0

\(\Rightarrow2-x>0\)

\(\Rightarrow x< 2\)

Vậy ...

b, Ta có : \(\sqrt[3]{125}.\sqrt[3]{216}-\sqrt[3]{512}.\sqrt[3]{\dfrac{1}{8}}\)

\(=5.6-\dfrac{8.1}{2}=26\)

5 tháng 7 2021

1a) Để căn thức bậc 2 có nghĩa thì \(\dfrac{1}{2-x}\ge0\Rightarrow2-x>0\Rightarrow x< 2\)

b) \(\sqrt[3]{125}.\sqrt[3]{-216}-\sqrt[3]{512}.\sqrt[3]{\dfrac{1}{8}}=\sqrt[3]{5^3}.\sqrt[3]{\left(-6\right)^3}-\sqrt[3]{8^3}.\sqrt[3]{\left(\dfrac{1}{2}\right)^3}\)

\(=5.\left(-6\right)-8.\dfrac{1}{2}=-34\)

\(\dfrac{\sqrt{ab}-b}{b}-\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{b}\right)^2}-\dfrac{\sqrt{a}}{\sqrt{b}}=\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{b}}-\dfrac{\sqrt{a}}{\sqrt{b}}\)

\(=-\dfrac{\sqrt{b}}{\sqrt{b}}=-1< 0\)

 

4 tháng 7 2023

a, \(VT=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)=a-b=VP\) đpcm

b,\(VT=1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}-\dfrac{a^2-a}{a-1}=1-\sqrt{a}+\sqrt{a}-a=1-a=VP\) đpcm

4 tháng 7 2023

loading...  

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)

\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

Thay \(x=6-2\sqrt{5}\) vào A, ta được:

\(A=\dfrac{\sqrt{5}-1-1}{\sqrt{5}-1+1}=\dfrac{\sqrt{5}-2}{\sqrt{5}}=\dfrac{5-2\sqrt{5}}{5}\)

b: Để \(A< \dfrac{1}{2}\) thì \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)

\(\Leftrightarrow2\sqrt{x}-2-\sqrt{x}-1< 0\)

\(\Leftrightarrow x< 9\)

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

28 tháng 7 2023

A) \(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\)

\(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\dfrac{\sqrt{x-1}}{3}-\sqrt{x-1}=6\)

\(\Leftrightarrow5\sqrt{x-1}-\dfrac{5}{2}\sqrt{x-1}-\sqrt{x-1}=6\)

\(\Leftrightarrow\dfrac{3}{2}\sqrt{x-1}=6\)

\(\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\)

\(\Leftrightarrow x=17\)

Vậy, x=17

 

A: \(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}=6+\sqrt{x-1}\)

=>5/2*căn x-1-căn x-1=6

=>3/2*căn x-1=6

=>căn x-1=4

=>x-1=16

=>x=17

B:

a: ĐKXĐ: x>=0; x<>1

b: Sửa đề: \(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}\)

=căn x-1+x-căn x+1

=x