Cho tam giác ABC nội tiếp đường tròn (O). Các cung nhỏ AB, BC, CA có số đo lần lượt là \(x+75^0,2x+25^0,3x-22^0\). Một góc của tam giác ABC có số đo là :
(A) \(57^05\) (B) \(59^0\) (C) \(61^0\) (D) \(60^0\)
Hãy chọn câu trả lời đúng ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các cung tạo thành một đường tròn
⇒ x + 75 ° + 2 x + 25 ° + 3 x − 22 ° = 360 ° ⇒ 6 x = 282 ° ⇒ x = 47 °
là các góc nội tiếp chắn các cung
Vậy chọn đáp án C.
Các cung tạo thành một đường tròn
⇒ x + 75 ° + 2 x + 25 ° + 3 x − 22 ° = 360 ° ⇒ 6 x = 282 ° ⇒ x = 47 °
là các góc nội tiếp chắn các cung
Vậy chọn đáp án C.
Lời giải:
Ta có:
$x+10^0+x+20^0+x+30^0=360^0$
$\Rightarrow 3x+60^0=360^0$
$\RIghtarrow x=100^0$
$\widehat{ABC}=\frac{1}{2}\text{sđc(AC)}=\frac{1}{2}(x+30^0)=\frac{1}{2}(100^0+30^0)=65^0$
$\widehat{ACB}=\frac{1}{2}\text{sđc(AB)}=\frac{1}{2}(x+10^0)=\frac{1}{2}(100^0+10^0)=55^0$
$\widehat{BAC}=180^0-\widehat{ABC}-\widehat{ACB}=180^0-65^0-55^0=60^0$
1: AB=AC
NB=NC
=>AN là trung trực của BC
mà O nằm trên trung trực của BC
nên A,N,O thẳng hàng
=>AN là đường kính của (O)
=>góc ABN=90 độ
2: góc BIN=1/2(sđ cung BN+sđ cung AP)
=1/2(sđ cungCN+sđ cung CP)
=1/2*sđ cung PN
=góc IBN
=>ΔIBN cân tại N
Bạn mở trong đường link này sẽ có https://moon.vn/hoi-dap/cho-tam-giac-deu-abc-noi-tiep-trong-duong-tron-tam-o-goi-mnp-lan-luot-la-trung-diem--665623
( Hình hơi bị lệch một xíu, tam giác không chính xác lắm nha)
a) Do tam giác ABC đều và M, N lần lượt là trung điểm của \(AB,BC\Rightarrow\hept{\begin{cases}OM\perp AB\\ON\perp BC\end{cases}\Rightarrow\widehat{OMB}=\widehat{ONB}=90^o}\)
Xét tứ giác BMON có: \(\widehat{OMB}+\widehat{ONB}=180^o\) suy ra tứ giác BMON là tứ giác nội tiếp (tứ giác cỏ tổng 2 góc đối bằng 180o
b) Do O là trọng tâm tam giác ABC(giả thiết) suy ra \(ON=\frac{OA}{2}=\frac{R}{2}\)( tính chất đường trung tuyến).
Mặt khác, \(OG=ON+NG\Rightarrow NG=OG-ON=R-\frac{R}{2}=\frac{R}{2}\)
Vậy \(NO=NG=\frac{R}{2}\left(đpcm\right)\)
c) Gọi \(E=EC\Omega PN\) ta có: \(OC\perp AB\) (do tam giác ABC đều); \(NO//AB\)( NP là đường trung bình của tam giác ABC)
\(\Rightarrow OC\perp NP\) tại E => tam giác OEF vuông tại E.
Xét tam giác ONC vuông tại N có đường cao NE ta có: \(ON^2=OE.OC\Rightarrow OE=\frac{ON^2}{OC}=\frac{R}{4}\) (hệ thức lượng)
Xét tam giác vuông OEF có: \(\sin\widehat{OFE}=\sin\widehat{OFP}=\frac{OE}{OF}=\frac{R}{\frac{4}{R}}=\frac{1}{4}\Rightarrow\widehat{OFP}\approx14^O28'\)
a: sđ cung nhỏ AB=2*30=60 độ
sđ cung lớn AB là 360-60=300 độ
góc PAB=góc BCA=30 độ
góc AOB=sđ cung nhỏ AB=60 độ
b,c: Bạn ghi lại đề đi bạn
Hướng dẫn làm bài:
Vì các cung AB, BC, CA tạo thành đường tròn, do đó:
(x + 75°) + (2x + 25°) + (3x - 22°) = 360°
⇔ 6x + 78° = 360° ⇔ 6x = 282° ⇔ x = 47°
Vậy sđ cung AB = x + 75° = 47° + 75° = 122°
⇒ˆC=12202=610⇒C^=12202=610
sđ cung BC = 2x + 25° = 2.47° + 25° = 119° ⇒ˆA=11902=59,50⇒A^=11902=59,50
sđ cung AC = 3x - 22° = 3.47° - 22° = 119° ⇒ˆB=11902=59,50⇒B^=11902=59,50
Chọn đáp án C