Rút gọn các biểu thức :
a) \(\sqrt{75}+\sqrt{48}-\sqrt{300}\)
b) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\)
c) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\)
d) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\) với \(b\ge0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\)
\(=7\sqrt{2}-6\sqrt{2}+\sqrt{2}\)
\(=\left(7-6+1\right)\sqrt{2}\)
\(=2\sqrt{2}\)
3) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\)
\(=3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\)
\(=\left(3-4+7\right)\sqrt{a}\)
\(=6\sqrt{a}\)
4) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\)
\(=4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)
\(=4\sqrt{b}-5\sqrt{10b}\)
a) \(A=\sqrt{9a}-\sqrt{16a}-\sqrt{49a}=3\sqrt{a}-4\sqrt{a}-7\sqrt{a}=-8\sqrt{a}\)
b) \(B=\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}}-\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\dfrac{\sqrt{3}\left(2+\sqrt{3}\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}}-\left(\sqrt{3}+\sqrt{2}\right)\)
\(=2+\sqrt{3}+\sqrt{2}+1-\sqrt{3}-\sqrt{2}=3\)
\(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}=4\sqrt{b}+2.2\sqrt{10b}-3.3\sqrt{10b}=4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}=4\sqrt{b}-5\sqrt{10b}\)
b: B=căn 49a^2+3a
=|7a|+3a
=7a+3a(a>=0)
=10a
c: C=căn16a^4+6a^2
=4a^2+6a^2
=10a^2
d: \(D=3\cdot3\cdot\sqrt{a^6}-6a^3=6\cdot\left|a^3\right|-6a^3\)
TH1: a>=0
D=6a^3-6a^3=0
TH2: a<0
D=-6a^3-6a^3=-12a^3
e: \(E=3\sqrt{9a^6}-6a^3\)
\(=3\cdot\sqrt{\left(3a^3\right)^2}-6a^3\)
=3*3a^3-6a^3(a>=0)
=3a^3
f: \(F=\sqrt{16a^{10}}+6a^5\)
\(=\sqrt{\left(4a^5\right)^2}+6a^5\)
=-4a^5+6a^5(a<=0)
=2a^5
a, \(\dfrac{2}{5}\sqrt{75}-0,5\sqrt{48}+\sqrt{300}-\dfrac{2}{3}\sqrt{12}=2\sqrt{3}-2\sqrt{3}+10\sqrt{3}-\dfrac{4}{3}\sqrt{3}=\dfrac{26}{3}\sqrt{3}\)
b, \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3}{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{6}}{2}+\dfrac{\sqrt{3}}{\sqrt{3}+\sqrt{2}}\)
\(=\dfrac{\sqrt{6}}{2}+\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)\)
\(=\dfrac{\sqrt{6}}{2}+3-\sqrt{6}=\dfrac{6-\sqrt{6}}{2}\)
c, \(3\sqrt{2}-2\sqrt{3}+2\sqrt{3}+3\sqrt{2}=6\sqrt{2}\)
d, \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\sqrt{\left(\sqrt{6}-3\right)^2}+\sqrt{\left(2\sqrt{6}+3\right)^2}\)
\(=-\sqrt{6}+3+2\sqrt{6}+3=\sqrt{6}+6\)
e, Ghi đúng đề.
\(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=\dfrac{a+b-2\sqrt{ab}+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}=2\sqrt{b}\)
4) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\)
\(=\sqrt{4^2\cdot b}+2\sqrt{2^2\cdot10b}-3\sqrt{3^2\cdot10b}\)
\(=4\sqrt{b}+2\cdot2\sqrt{10b}-3\cdot3\sqrt{10b}\)
\(=4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)
\(=4\sqrt{b}+\left(4\sqrt{10b}-9\sqrt{10b}\right)\)
\(=4\sqrt{b}-5\sqrt{10b}\)
`a, sqrt(16b) + 2 sqrt(40b) - 3 sqrt(90b)`
`= 4sqrtb + 2sqrt(8.5b) - 3 sqrt(9.10b)`
`= 4 sqrt b + 4sqrt(10b) - 9 sqrt(10b)`
`= 4sqrtb-5sqrt(10b)`.
\(A=\sqrt{4^2b}+2\sqrt{2^2\cdot10b}-3\sqrt{3^2\cdot10b}=4\sqrt{b}+4\sqrt{10}\cdot\sqrt{b}-9\sqrt{10}\cdot\sqrt{b}\)
\(=4\sqrt{b}-5\sqrt{10}\sqrt{b}=\left(4-5\sqrt{10}\right)\sqrt{b}\)
Rut gon A = √16b+2√40b−3√90bva`b≥0
A=√42b+2√22·10b−3√32·10b=4√b+4√10·√b−9√10·√b
=4√b−5√10√b=(4−5√10)√b
\(a.A=\sqrt{75}+\sqrt{48}-\sqrt{300}=\sqrt{25.3}+\sqrt{16.3}-\sqrt{100.3}=5\sqrt{3}+4\sqrt{3}-10\sqrt{3}=-\sqrt{3}\) \(b.B=\sqrt{98}-\sqrt{72}+0,5\sqrt{8}=\sqrt{49.2}-\sqrt{36.2}+0,5\sqrt{4.2}=7\sqrt{2}-6\sqrt{2}+\sqrt{2}=2\sqrt{2}\) \(c.\dfrac{5\sqrt{5}-\sqrt{15.5}+5\sqrt{5}}{\sqrt{5}}=\dfrac{\sqrt{5}\left(10-\sqrt{15}\right)}{\sqrt{5}}=10-\sqrt{15}\)
ĐS: a) 3√5;35;
b) 9√22;922;
c) 15√2−√5;152−5;
d) 17√25.
a) \(\sqrt{75}+\sqrt{48}-\sqrt{300}\) = \(5\sqrt{3}+4\sqrt{3}-10\sqrt{3}\) = \(-\sqrt{3}\)
b) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\) = \(7\sqrt{2}-6\sqrt{2}+\sqrt{2}\) = \(2\sqrt{2}\)
c) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) = \(3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\) = \(6\sqrt{a}\)
d) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\) = \(4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)
= \(4\sqrt{b}-5\sqrt{10b}\)