Chứng minh 8\(^{100}\)-1\(⋮\)9
help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(10^{100}+10^{1000}+7=(10^{100}-1)+(10^{1000}-1)+9\\
=\underbrace{999...9}_{100}+\underbrace{999...9}_{1000}+9\)
Tổng này chia hết cho 9 do 3 số hạng đều chia hết cho 9.
\(A=1+\frac{5^9}{1+5+..+5^8}\)
\(=1+\frac{1}{\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5}}\)
Tương tự:
\(B=1+\frac{1}{\frac{1}{3^9}+\frac{1}{3^8}+...+\frac{1}{3}}\)
Vì \(\frac{1}{5}< \frac{1}{3}\) , \(\frac{1}{5^2}< \frac{1}{3^2}\), . . .
nên: \(\frac{1}{\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5}}>\frac{1}{\frac{1}{3^9}+\frac{1}{3^8}+...+\frac{1}{3}}\)
=> A > B
Vậy đề bạn cho chứng minh A < B là sai nhé.
Ta có:\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\)
=>\(A=\frac{\left(1+5+5^2+...+5^8\right)}{\left(1+5+5^2+...+5^8\right)}+\frac{5^9}{1+5+5^2+...+5^8}\)
=>\(A=1+\frac{5^9}{1+5+5^2+...+5^8}\)
Ta có:\(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
=>\(B=\frac{1+3+3^2+...+3^8}{1+3+3^2+...+3^8}+\frac{3^9}{1+3+3^2+...+3^8}\)
=>\(B=1+\frac{3^9}{1+3+3^2+...+3^8}\)
vì:\(1+3+3^2+...+3^8< 1+5+5^2+...+5^8\)
Nên A<B(đpcm).
Ta có : A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)
\(\Rightarrow A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}\)
\(\Rightarrow A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}\)<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{9}{9}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{8}{9}\) (1)
\(\Rightarrow A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}\)>\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{5}{10}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{4}{10}\)
\(\Rightarrow A>\dfrac{2}{5}\) (2)
Từ (1) và (2)\(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\)
Âu Mai Gớt :)) Bài này là cả giờ sinh hoạt của t.
Đặt: \(L=1.2.3+2.3.4+100.101.102\)
\(4L=1.2.3.4+2.3.4.\left(5-1\right)+...+100.101.102.\left(103-99\right)\)
\(4L=1.2.3.4+2.3.4.5-1.2.3.4+...+100.101.102.103-99.100.101.102\)
\(4L=100.101.102.103\Leftrightarrow L=\dfrac{100.101.102.103}{4}\)(1)
Mặt khác( Kiểu người 2 mặt ý) :
\(L=\left(2-1\right).2.\left(2+1\right)+\left(3-1\right).3.\left(3+1\right)+...+\left(101-1\right).101.\left(101+1\right)\)
\(L=2\left(2^2-1\right)+3\left(3^2-1\right)+...+101\left(101^2-1\right)\)
\(L=2^3-2+3^3-3+...+101^3-101\)
\(L=\left(1^3+2^3+3^3+...+100^3\right)-\left(1+2+3+...+100\right)+101^3-101\)(2)
Từ (1) và (2) ta có: \(\left(1^3+2^3+3^3+...+100^3\right)-\left(1+2+3+...+100\right)+101^3-101=\dfrac{100.101.102.103}{4}\)
\(\Rightarrow A-\dfrac{100.101}{2}+101^3-101=25.101.102.103\)
\(\Rightarrow A=25.101.102.103+101-101^3+\dfrac{100.101}{2}\)
\(A=25502500\)
\(\)Mà: \(B=1+2+3+...+100=\dfrac{100.101}{2}=5050\)
\(\Rightarrow\dfrac{A}{B}=5050\Leftrightarrow A⋮B\)
ta có điều phải chứng minh.
P/S: Có thể nhận thấy rằng: \(A=B^2\).Công thức tổng quát:
\(1^3+2^3+...+l^3=\left(1+2+3+...+l\right)^2\)
Chứng minh : A =1+1/2+1/3+...+1/100 không phải là số tự nhiên
=> A <1
Ta có:
A=1+1/2+1/3+...+1/100 <1
=>A=1+1/2+1/3+..+1/100<1/1.2+1/2.3+...+1/99.100
A= 1+1/2+1/3+..+1/100< 1-1/2+1/2-1/3+...+1/99-1/100
A=1+1/2+1/3+..+1/100<1-1/100
A=1+1/2+1/3+..+1/100<99/100
Vì 99/100 <1
nên A=1+1/2+1/3+..+1/100<1
=> A=1+1/2+1/3+..+1/100 không phải là số tự nhiên.
Khi x=16/9 thì \(A=\dfrac{\dfrac{4}{3}+1}{\dfrac{4}{3}-1}=\dfrac{7}{3}:\dfrac{1}{3}=7\)
Khi x=25/9 thì \(A=\dfrac{\dfrac{5}{3}+1}{\dfrac{5}{3}-1}=\dfrac{8}{3}:\dfrac{2}{3}=4\)